These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


568 related items for PubMed ID: 26954100

  • 1. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light.
    Lu B, Liu A, Wu H, Shen Q, Zhao T, Wang J.
    Langmuir; 2016 Mar 29; 32(12):3085-94. PubMed ID: 26954100
    [Abstract] [Full Text] [Related]

  • 2. Au@Cu2O stellated polytope with core-shelled nanostructure for high-performance adsorption and visible-light-driven photodegradation of cationic and anionic dyes.
    Wu X, Cai J, Li S, Zheng F, Lai Z, Zhu L, Chen T.
    J Colloid Interface Sci; 2016 May 01; 469():138-146. PubMed ID: 26874979
    [Abstract] [Full Text] [Related]

  • 3. Multiplasmon modes for enhancing the photocatalytic activity of Au/Ag/Cu2O core-shell nanorods.
    Hu Z, Mi Y, Ji Y, Wang R, Zhou W, Qiu X, Liu X, Fang Z, Wu X.
    Nanoscale; 2019 Sep 21; 11(35):16445-16454. PubMed ID: 31441922
    [Abstract] [Full Text] [Related]

  • 4. Sandwiched ZnO@Au@Cu2O nanorod films as efficient visible-light-driven plasmonic photocatalysts.
    Ren S, Wang B, Zhang H, Ding P, Wang Q.
    ACS Appl Mater Interfaces; 2015 Feb 25; 7(7):4066-74. PubMed ID: 25671518
    [Abstract] [Full Text] [Related]

  • 5. Au@Cu2O core-shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance.
    Rai P, Khan R, Raj S, Majhi SM, Park KK, Yu YT, Lee IH, Sekhar PK.
    Nanoscale; 2014 Jan 07; 6(1):581-8. PubMed ID: 24241354
    [Abstract] [Full Text] [Related]

  • 6. Facile synthesis of highly efficient one-dimensional plasmonic photocatalysts through Ag@Cu₂O core-shell heteronanowires.
    Xiong J, Li Z, Chen J, Zhang S, Wang L, Dou S.
    ACS Appl Mater Interfaces; 2014 Sep 24; 6(18):15716-25. PubMed ID: 25148582
    [Abstract] [Full Text] [Related]

  • 7. Facet-Dependent Optical Properties Revealed through Investigation of Polyhedral Au-Cu₂O and Bimetallic Core-Shell Nanocrystals.
    Huang MH, Rej S, Chiu CY.
    Small; 2015 Jun 24; 11(23):2716-26. PubMed ID: 25703694
    [Abstract] [Full Text] [Related]

  • 8. Au@Cu2O Core-Shell and Au@Cu2Se Yolk-Shell Nanocrystals as Promising Photocatalysts in Photoelectrochemical Water Splitting and Photocatalytic Hydrogen Production.
    Lai TH, Tsao CW, Fang MJ, Wu JY, Chang YP, Chiu YH, Hsieh PY, Kuo MY, Chang KD, Hsu YJ.
    ACS Appl Mater Interfaces; 2022 Sep 14; 14(36):40771-40783. PubMed ID: 36040289
    [Abstract] [Full Text] [Related]

  • 9. SERS study of surface plasmon resonance induced carrier movement in Au@Cu2O core-shell nanoparticles.
    Chen L, Zhang F, Deng XY, Xue X, Wang L, Sun Y, Feng JD, Zhang Y, Wang Y, Jung YM.
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan 15; 189():608-612. PubMed ID: 28886507
    [Abstract] [Full Text] [Related]

  • 10. Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity.
    Tao S, Yang M, Chen H, Ren M, Chen G.
    J Colloid Interface Sci; 2017 Jan 15; 486():16-26. PubMed ID: 27689722
    [Abstract] [Full Text] [Related]

  • 11. Plasmon enhancement effect in Au gold nanorods@Cu2O core-shell nanostructures and their use in probing defect states.
    Shi X, Ji Y, Hou S, Liu W, Zhang H, Wen T, Yan J, Song M, Hu Z, Wu X.
    Langmuir; 2015 Feb 03; 31(4):1537-46. PubMed ID: 25564759
    [Abstract] [Full Text] [Related]

  • 12. Photothermal effects from Au-Cu2O core-shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability.
    Wang HJ, Yang KH, Hsu SC, Huang MH.
    Nanoscale; 2016 Jan 14; 8(2):965-72. PubMed ID: 26660504
    [Abstract] [Full Text] [Related]

  • 13. Facet-dependent optical properties of Pd-Cu2O core-shell nanocubes and octahedra.
    Rej S, Wang HJ, Huang MX, Hsu SC, Tan CS, Lin FC, Huang JS, Huang MH.
    Nanoscale; 2015 Jul 07; 7(25):11135-41. PubMed ID: 26059169
    [Abstract] [Full Text] [Related]

  • 14. Facet-dependent and au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures.
    Kuo CH, Yang YC, Gwo S, Huang MH.
    J Am Chem Soc; 2011 Feb 02; 133(4):1052-7. PubMed ID: 21174406
    [Abstract] [Full Text] [Related]

  • 15. An LSPR-based "push-pull" synergetic effect for the enhanced photocatalytic performance of a gold nanorod@cuprous oxide-gold nanoparticle ternary composite.
    Yu X, Liu X, Wang B, Meng Q, Sun S, Tang Y, Zhao K.
    Nanoscale; 2020 Jan 23; 12(3):1912-1920. PubMed ID: 31907507
    [Abstract] [Full Text] [Related]

  • 16. Size Control and Growth Process Study of Au@Cu2O Particles.
    Wang Y, Zheng M, Liu S, Wang Z.
    Nanoscale Res Lett; 2016 Dec 23; 11(1):390. PubMed ID: 27613067
    [Abstract] [Full Text] [Related]

  • 17. Effect of Au nanorods on potential barrier modulation in morphologically controlled Au@Cu2O core-shell nanoreactors for gas sensor applications.
    Majhi SM, Rai P, Raj S, Chon BS, Park KK, Yu YT.
    ACS Appl Mater Interfaces; 2014 May 28; 6(10):7491-7. PubMed ID: 24779525
    [Abstract] [Full Text] [Related]

  • 18. Plasmonic Ag@Cu2O core-shell nanostructures exhibiting near-infrared photothermal effect.
    Ivanchenko M, Carroll AL, Brothers AB, Jing H.
    RSC Adv; 2023 Oct 26; 13(45):31569-31577. PubMed ID: 37901274
    [Abstract] [Full Text] [Related]

  • 19. Au and Ag/Au double-shells hollow nanoparticles with improved near infrared surface plasmon and photoluminescence properties.
    Ghosh Chaudhuri R, Paria S.
    J Colloid Interface Sci; 2016 Jan 01; 461():15-19. PubMed ID: 26397903
    [Abstract] [Full Text] [Related]

  • 20. Yolk-Shelled Gold@Cuprous Oxide Nanostructures with Hot Carriers Boosting Photocatalytic Performance.
    Ma Y, Liu X, Wei X, Le J, Fu Y, Han Q, Ji H, Yang Z, Wu H.
    Langmuir; 2021 Apr 20; 37(15):4578-4586. PubMed ID: 33829794
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.