These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1104 related items for PubMed ID: 26955741

  • 21. Synthesis, characterization, and degradation behavior of amphiphilic poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(epsilon-caprolactone).
    Miao ZM, Cheng SX, Zhang XZ, Zhuo RX.
    Biomacromolecules; 2005; 6(6):3449-57. PubMed ID: 16283778
    [Abstract] [Full Text] [Related]

  • 22. Surface-initiated atom transfer radical polymerization grafting from nanoporous cellulose gels to create hydrophobic nanocomposites.
    Cheng D, Wei P, Zhang L, Cai J.
    RSC Adv; 2018 Jul 30; 8(48):27045-27053. PubMed ID: 35539974
    [Abstract] [Full Text] [Related]

  • 23. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M, Xu WZ, Wang Z, Sham TK, Charpentier PA.
    ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):16918-31. PubMed ID: 25184699
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Grafting of cellulose fibers with poly(epsilon-caprolactone) and poly(L-lactic acid) via ring-opening polymerization.
    Lönnberg H, Zhou Q, Brumer H, Teeri TT, Malmström E, Hult A.
    Biomacromolecules; 2006 Jul 08; 7(7):2178-85. PubMed ID: 16827585
    [Abstract] [Full Text] [Related]

  • 27. Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals.
    Zoppe JO, Peresin MS, Habibi Y, Venditti RA, Rojas OJ.
    ACS Appl Mater Interfaces; 2009 Sep 08; 1(9):1996-2004. PubMed ID: 20355825
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers.
    Fernández J, Etxeberria A, Sarasua JR.
    J Mech Behav Biomed Mater; 2012 May 08; 9():100-12. PubMed ID: 22498288
    [Abstract] [Full Text] [Related]

  • 30. Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on D, L-lactide, epsilon-caprolactone and trimethylene carbonate.
    Declercq HA, Cornelissen MJ, Gorskiy TL, Schacht EH.
    J Mater Sci Mater Med; 2006 Feb 08; 17(2):113-22. PubMed ID: 16502243
    [Abstract] [Full Text] [Related]

  • 31. Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation.
    Bhutto MA, Wu T, Sun B, Ei-Hamshary H, Al-Deyab SS, Mo X.
    Colloids Surf B Biointerfaces; 2016 Aug 01; 144():108-117. PubMed ID: 27085042
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. A poly(lactide) stereocomplex structure with modified magnesium oxide and its effects in enhancing the mechanical properties and suppressing inflammation.
    Kum CH, Cho Y, Seo SH, Joung YK, Ahn DJ, Han DK.
    Small; 2014 Sep 24; 10(18):3783-94. PubMed ID: 24820693
    [Abstract] [Full Text] [Related]

  • 34. Fabrication and characterization of Mg/P(LLA-CL)-blended nanofiber scaffold.
    Li H, Wu T, Zheng Y, El-Hamshary H, Al-Deyab SS, Mo X.
    J Biomater Sci Polym Ed; 2014 Jul 24; 25(10):1013-27. PubMed ID: 24894635
    [Abstract] [Full Text] [Related]

  • 35. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites.
    Fu S, Guo G, Gong C, Zeng S, Liang H, Luo F, Zhang X, Zhao X, Wei Y, Qian Z.
    J Phys Chem B; 2009 Dec 31; 113(52):16518-25. PubMed ID: 19947637
    [Abstract] [Full Text] [Related]

  • 36. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(epsilon-caprolactone) blends for tissue engineering applications in the form of hollow fibers.
    Chiono V, Ciardelli G, Vozzi G, Sotgiu MG, Vinci B, Domenici C, Giusti P.
    J Biomed Mater Res A; 2008 Jun 15; 85(4):938-53. PubMed ID: 17896770
    [Abstract] [Full Text] [Related]

  • 37. Shape memory effect of poly(D,L-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles.
    Zheng X, Zhou S, Xiao Y, Yu X, Li X, Wu P.
    Colloids Surf B Biointerfaces; 2009 Jun 01; 71(1):67-72. PubMed ID: 19201169
    [Abstract] [Full Text] [Related]

  • 38. Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells.
    Idris SB, Arvidson K, Plikk P, Ibrahim S, Finne-Wistrand A, Albertsson AC, Bolstad AI, Mustafa K.
    J Biomed Mater Res A; 2010 Aug 01; 94(2):631-9. PubMed ID: 20205238
    [Abstract] [Full Text] [Related]

  • 39. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M, Menaszek E, Zagrajczuk B, Pawlik J, Cholewa-Kowalska K.
    Mater Sci Eng C Mater Biol Appl; 2015 Nov 01; 56():9-21. PubMed ID: 26249560
    [Abstract] [Full Text] [Related]

  • 40. Biocompatibility, alignment degree and mechanical properties of an electrospun chitosan-P(LLA-CL) fibrous scaffold.
    Chen F, Su Y, Mo X, He C, Wang H, Ikada Y.
    J Biomater Sci Polym Ed; 2009 Nov 01; 20(14):2117-28. PubMed ID: 19874681
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 56.