These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Effect of afferent feedback and central motor commands on soleus H-reflex suppression during arm cycling. Hundza SR, de Ruiter GC, Klimstra M, Zehr EP. J Neurophysiol; 2012 Dec; 108(11):3049-58. PubMed ID: 22956797 [Abstract] [Full Text] [Related]
26. Rhythmic arm cycling training improves walking and neurophysiological integrity in chronic stroke: the arms can give legs a helping hand in rehabilitation. Kaupp C, Pearcey GEP, Klarner T, Sun Y, Cullen H, Barss TS, Zehr EP. J Neurophysiol; 2018 Mar 01; 119(3):1095-1112. PubMed ID: 29212917 [Abstract] [Full Text] [Related]
28. Rhythmic leg cycling modulates forearm muscle H-reflex amplitude and corticospinal tract excitability. Zehr EP, Klimstra M, Johnson EA, Carroll TJ. Neurosci Lett; 2007 May 23; 419(1):10-4. PubMed ID: 17452078 [Abstract] [Full Text] [Related]
29. Modulation of corticospinal input to the legs by arm and leg cycling in people with incomplete spinal cord injury. Zhou R, Alvarado L, Kim S, Chong SL, Mushahwar VK. J Neurophysiol; 2017 Oct 01; 118(4):2507-2519. PubMed ID: 28701544 [Abstract] [Full Text] [Related]
30. Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes. Zehr EP, Kido A. J Physiol; 2001 Dec 15; 537(Pt 3):1033-45. PubMed ID: 11744775 [Abstract] [Full Text] [Related]
31. Phase-dependent modulation of soleus H-reflex amplitude induced by rhythmic arm cycling. de Ruiter GC, Hundza SR, Zehr EP. Neurosci Lett; 2010 May 07; 475(1):7-11. PubMed ID: 20298752 [Abstract] [Full Text] [Related]
35. Cutaneous reflexes during rhythmic arm cycling are insensitive to asymmetrical changes in crank length. Hundza SR, Zehr EP. Exp Brain Res; 2006 Jan 07; 168(1-2):165-77. PubMed ID: 16041498 [Abstract] [Full Text] [Related]
36. Sensory afferent inhibition within and between limbs in humans. Bikmullina R, Bäumer T, Zittel S, Münchau A. Clin Neurophysiol; 2009 Mar 07; 120(3):610-8. PubMed ID: 19136299 [Abstract] [Full Text] [Related]
37. Rhythmic arm swing enhances long latency facilitatory effect of transcranial magnetic stimulation on soleus motoneuron pool excitability. Hiraoka K, Akizaki K, Ashida A, Miki M, Okada T, Shin S, Takeno K, Yasuoka M. Somatosens Mot Res; 2011 Mar 07; 28(3-4):94-101. PubMed ID: 22115077 [Abstract] [Full Text] [Related]
38. Biomechanical outcomes and neural correlates of cutaneous reflexes evoked during rhythmic arm cycling. Klimstra MD, Thomas E, Zehr EP. J Biomech; 2011 Mar 15; 44(5):802-9. PubMed ID: 21288521 [Abstract] [Full Text] [Related]
39. Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. Hortobágyi T, Taylor JL, Petersen NT, Russell G, Gandevia SC. J Neurophysiol; 2003 Oct 15; 90(4):2451-9. PubMed ID: 14534271 [Abstract] [Full Text] [Related]
40. Suppression of soleus H-reflex amplitude is graded with frequency of rhythmic arm cycling. Hundza SR, Zehr EP. Exp Brain Res; 2009 Feb 15; 193(2):297-306. PubMed ID: 19011847 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]