These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
390 related items for PubMed ID: 26964482
1. iRGD decorated lipid-polymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy. Zhang J, Hu J, Chan HF, Skibba M, Liang G, Chen M. Nanomedicine; 2016 Jul; 12(5):1303-11. PubMed ID: 26964482 [Abstract] [Full Text] [Related]
3. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Zhao X, Chen Q, Li Y, Tang H, Liu W, Yang X. Eur J Pharm Biopharm; 2015 Jun; 93():27-36. PubMed ID: 25770771 [Abstract] [Full Text] [Related]
4. Co-Administration of iRGD with Sorafenib-Loaded Iron-Based Metal-Organic Framework as a Targeted Ferroptosis Agent for Liver Cancer Therapy. Liu X, Zhu X, Qi X, Meng X, Xu K. Int J Nanomedicine; 2021 Jun; 16():1037-1050. PubMed ID: 33603367 [Abstract] [Full Text] [Related]
5. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Zhang J, Li J, Shi Z, Yang Y, Xie X, Lee SM, Wang Y, Leong KW, Chen M. Acta Biomater; 2017 Aug; 58():349-364. PubMed ID: 28455219 [Abstract] [Full Text] [Related]
6. Resistance of hepatocellular carcinoma to sorafenib can be overcome with co-delivery of PI3K/mTOR inhibitor BEZ235 and sorafenib in nanoparticles. Wu B, Li A, Zhang Y, Liu X, Zhou S, Gan H, Cai S, Liang Y, Tang X. Expert Opin Drug Deliv; 2020 Apr; 17(4):573-587. PubMed ID: 32056461 [Abstract] [Full Text] [Related]
7. Low-density lipoprotein decorated silica nanoparticles co-delivering sorafenib and doxorubicin for effective treatment of hepatocellular carcinoma. Ye J, Zhang R, Chai W, Du X. Drug Deliv; 2018 Nov; 25(1):2007-2014. PubMed ID: 30799656 [Abstract] [Full Text] [Related]
8. MiR-375 delivered by lipid-coated doxorubicin-calcium carbonate nanoparticles overcomes chemoresistance in hepatocellular carcinoma. Zhao P, Wu S, Cheng Y, You J, Chen Y, Li M, He C, Zhang X, Yang T, Lu Y, Lee RJ, He X, Xiang G. Nanomedicine; 2017 Nov; 13(8):2507-2516. PubMed ID: 28577837 [Abstract] [Full Text] [Related]
11. Targeted hepatocellular carcinoma therapy: transferrin modified, self-assembled polymeric nanomedicine for co-delivery of cisplatin and doxorubicin. Zhang X, Li J, Yan M. Drug Dev Ind Pharm; 2016 Oct; 42(10):1590-9. PubMed ID: 26942448 [Abstract] [Full Text] [Related]
12. Hepatocellular carcinoma dually-targeted nanoparticles for reduction triggered intracellular delivery of doxorubicin. Mezghrani O, Tang Y, Ke X, Chen Y, Hu D, Tu J, Zhao L, Bourkaib N. Int J Pharm; 2015 Jan 30; 478(2):553-68. PubMed ID: 25455765 [Abstract] [Full Text] [Related]
13. Targeted and synergistic therapy for hepatocellular carcinoma: monosaccharide modified lipid nanoparticles for the co-delivery of doxorubicin and sorafenib. Duan W, Liu Y. Drug Des Devel Ther; 2018 Jan 30; 12():2149-2161. PubMed ID: 30034219 [Abstract] [Full Text] [Related]
14. Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxorubicin and sorafenib against hepatocellular carcinoma. Malarvizhi GL, Retnakumari AP, Nair S, Koyakutty M. Nanomedicine; 2014 Nov 30; 10(8):1649-59. PubMed ID: 24905399 [Abstract] [Full Text] [Related]
15. Biomacromolecule/lipid hybrid nanoparticles for controlled delivery of sorafenib in targeting hepatocellular carcinoma therapy. Zhang J, Wang T, Mu S, Olerile LD, Yu X, Zhang N. Nanomedicine (Lond); 2017 Apr 30; 12(8):911-925. PubMed ID: 28339312 [Abstract] [Full Text] [Related]
16. Synergistic chemotherapeutic effect of sorafenib-loaded pullulan-Dox conjugate nanoparticles against murine breast carcinoma. Sui J, Cui Y, Cai H, Bian S, Xu Z, Zhou L, Sun Y, Liang J, Fan Y, Zhang X. Nanoscale; 2017 Feb 23; 9(8):2755-2767. PubMed ID: 28155940 [Abstract] [Full Text] [Related]
17. Nanoparticles of a polyaspartamide-based brush copolymer for modified release of sorafenib: In vitro and in vivo evaluation. Cervello M, Pitarresi G, Volpe AB, Porsio B, Balasus D, Emma MR, Azzolina A, Puleio R, Loria GR, Puleo S, Giammona G. J Control Release; 2017 Nov 28; 266():47-56. PubMed ID: 28917533 [Abstract] [Full Text] [Related]
18. Knockout of ADAM10 enhances sorafenib antitumor activity of hepatocellular carcinoma in vitro and in vivo. Zhang W, Liu S, Liu K, Ji B, Wang Y, Liu Y. Oncol Rep; 2014 Nov 28; 32(5):1913-22. PubMed ID: 25176394 [Abstract] [Full Text] [Related]
19. Co-delivery of sorafenib and metapristone encapsulated by CXCR4-targeted PLGA-PEG nanoparticles overcomes hepatocellular carcinoma resistance to sorafenib. Zheng N, Liu W, Li B, Nie H, Liu J, Cheng Y, Wang J, Dong H, Jia L. J Exp Clin Cancer Res; 2019 May 31; 38(1):232. PubMed ID: 31151472 [Abstract] [Full Text] [Related]
20. Anti-GPC3 antibody-modified sorafenib-loaded nanoparticles significantly inhibited HepG2 hepatocellular carcinoma. Tang X, Chen L, Li A, Cai S, Zhang Y, Liu X, Jiang Z, Liu X, Liang Y, Ma D. Drug Deliv; 2018 Nov 31; 25(1):1484-1494. PubMed ID: 29916268 [Abstract] [Full Text] [Related] Page: [Next] [New Search]