These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 26977361

  • 21. Non-contact optical spectroscopy for tumor-sensitive diffuse reflectance and fluorescence measurements on murine subcutaneous tissue models: Monte Carlo modeling and experimental validations.
    Hasan MZ, Saha PS, Korfhage MO, Zhu C.
    Biomed Opt Express; 2023 Oct 01; 14(10):5418-5439. PubMed ID: 37854556
    [Abstract] [Full Text] [Related]

  • 22. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q, Ramanujam N.
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr 01; 24(4):1011-25. PubMed ID: 17361287
    [Abstract] [Full Text] [Related]

  • 23. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam.
    Wang A, Lu R, Xie L.
    Appl Opt; 2016 Jan 01; 55(1):95-103. PubMed ID: 26835627
    [Abstract] [Full Text] [Related]

  • 24. Efficient determination of the epidermal optical properties using a diffusion model-based approach: Monte Carlo studies.
    Tseng SH, Hou MF.
    J Biomed Opt; 2011 Aug 01; 16(8):087007. PubMed ID: 21895334
    [Abstract] [Full Text] [Related]

  • 25. Optical properties of porcine skin dermis between 900 nm and 1500 nm.
    Du Y, Hu XH, Cariveau M, Ma X, Kalmus GW, Lu JQ.
    Phys Med Biol; 2001 Jan 01; 46(1):167-81. PubMed ID: 11197670
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements.
    Arifler D, MacAulay C, Follen M, Richards-Kortum R.
    J Biomed Opt; 2006 Jan 01; 11(6):064027. PubMed ID: 17212550
    [Abstract] [Full Text] [Related]

  • 28.
    Frostig RD, Cuccia DJ, Abookasis D, Frostig RD, Tromberg BJ.
    ; 2009 Jan 01. PubMed ID: 26844326
    [Abstract] [Full Text] [Related]

  • 29. Two-term scattering phase function for photon transport to model subdiffuse reflectance in superficial tissues.
    Jacques SL, McCormick NJ.
    Biomed Opt Express; 2023 Feb 01; 14(2):751-770. PubMed ID: 36874481
    [Abstract] [Full Text] [Related]

  • 30. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra.
    Liu Q, Ramanujam N.
    Appl Opt; 2006 Jul 01; 45(19):4776-90. PubMed ID: 16799693
    [Abstract] [Full Text] [Related]

  • 31. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q, Zhu C, Ramanujam N.
    J Biomed Opt; 2003 Apr 01; 8(2):223-36. PubMed ID: 12683848
    [Abstract] [Full Text] [Related]

  • 32. Direct estimation of the reduced scattering coefficient from experimentally measured time-resolved reflectance via Monte Carlo based lookup tables.
    Helton M, Mycek MA, Vishwanath K.
    Biomed Opt Express; 2020 Aug 01; 11(8):4366-4378. PubMed ID: 32923049
    [Abstract] [Full Text] [Related]

  • 33. Quantification of soft tissue parameters from spatially resolved diffuse reflectance finite element models.
    Vasudevan V, Narayanan Unni S.
    Int J Numer Method Biomed Eng; 2022 Jan 01; 38(1):e3546. PubMed ID: 34719121
    [Abstract] [Full Text] [Related]

  • 34. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP, Doyle TE.
    Appl Opt; 2013 Sep 01; 52(25):6220-9. PubMed ID: 24085080
    [Abstract] [Full Text] [Related]

  • 35. Analysis of the influence of collagen fibres in the dermis on skin optical reflectance by Monte Carlo simulation in a nine-layered skin model.
    Masuda Y, Ogura Y, Inagaki Y, Yasui T, Aizu Y.
    Skin Res Technol; 2018 May 01; 24(2):248-255. PubMed ID: 29134755
    [Abstract] [Full Text] [Related]

  • 36. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D, Agrawal A, Matchette LS, Pfefer TJ.
    Biomed Eng Online; 2006 Aug 23; 5():49. PubMed ID: 16928274
    [Abstract] [Full Text] [Related]

  • 37. Effects of capsule on surface diffuse reflectance spectroscopy of the subcapsular parenchyma of a solid organ.
    Piao D, Borron H, Hawxby A, Wright H, Rubin EM.
    J Biomed Opt; 2018 Jul 23; 23(12):1-23. PubMed ID: 30054997
    [Abstract] [Full Text] [Related]

  • 38. Virtually increased acceptance angle for efficient estimation of spatially resolved reflectance in the subdiffusive regime: a Monte Carlo study.
    Ivančič M, Naglič P, Pernuš F, Likar B, Bürmen M.
    Biomed Opt Express; 2017 Nov 01; 8(11):4872-4886. PubMed ID: 29188088
    [Abstract] [Full Text] [Related]

  • 39. Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media.
    Reif R, A'Amar O, Bigio IJ.
    Appl Opt; 2007 Oct 10; 46(29):7317-28. PubMed ID: 17932546
    [Abstract] [Full Text] [Related]

  • 40. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue.
    Kienle A, Lilge L, Patterson MS, Hibst R, Steiner R, Wilson BC.
    Appl Opt; 1996 May 01; 35(13):2304-14. PubMed ID: 21085367
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.