These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
227 related items for PubMed ID: 26979328
1. Turnabout Is Fair Play: Herbivory-Induced Plant Chitinases Excreted in Fall Armyworm Frass Suppress Herbivore Defenses in Maize. Ray S, Alves PC, Ahmad I, Gaffoor I, Acevedo FE, Peiffer M, Jin S, Han Y, Shakeel S, Felton GW, Luthe DS. Plant Physiol; 2016 May; 171(1):694-706. PubMed ID: 26979328 [Abstract] [Full Text] [Related]
2. Asymmetry in Herbivore Effector Responses: Caterpillar Frass Effectors Reduce Performance of a Subsequent Herbivore. Ray S, Helms AM, Matulis NL, Davidson-Lowe E, Grisales W, Ali JG. J Chem Ecol; 2020 Jan; 46(1):76-83. PubMed ID: 31845135 [Abstract] [Full Text] [Related]
3. Maize Plants Recognize Herbivore-Associated Cues from Caterpillar Frass. Ray S, Gaffor I, Acevedo FE, Helms A, Chuang WP, Tooker J, Felton GW, Luthe DS. J Chem Ecol; 2015 Sep; 41(9):781-92. PubMed ID: 26306592 [Abstract] [Full Text] [Related]
4. Lessons from the Far End: Caterpillar FRASS-Induced Defenses in Maize, Rice, Cabbage, and Tomato. Ray S, Basu S, Rivera-Vega LJ, Acevedo FE, Louis J, Felton GW, Luthe DS. J Chem Ecol; 2016 Nov; 42(11):1130-1141. PubMed ID: 27704315 [Abstract] [Full Text] [Related]
5. Maize Endochitinase Expression in Response to Fall Armyworm Herbivory. Han Y, Taylor EB, Luthe D. J Chem Ecol; 2021 Jul; 47(7):689-706. PubMed ID: 34056671 [Abstract] [Full Text] [Related]
6. Phytohormones in Fall Armyworm Saliva Modulate Defense Responses in Plants. Acevedo FE, Smith P, Peiffer M, Helms A, Tooker J, Felton GW. J Chem Ecol; 2019 Jul; 45(7):598-609. PubMed ID: 31218595 [Abstract] [Full Text] [Related]
7. Herbivore cues from the fall armyworm (Spodoptera frugiperda) larvae trigger direct defenses in maize. Chuang WP, Ray S, Acevedo FE, Peiffer M, Felton GW, Luthe DS. Mol Plant Microbe Interact; 2014 May; 27(5):461-70. PubMed ID: 24329171 [Abstract] [Full Text] [Related]
8. Spodoptera frugiperda Caterpillars Suppress Herbivore-Induced Volatile Emissions in Maize. De Lange ES, Laplanche D, Guo H, Xu W, Vlimant M, Erb M, Ton J, Turlings TCJ. J Chem Ecol; 2020 Mar; 46(3):344-360. PubMed ID: 32002720 [Abstract] [Full Text] [Related]
9. Caterpillar attack triggers accumulation of the toxic maize protein RIP2. Chuang WP, Herde M, Ray S, Castano-Duque L, Howe GA, Luthe DS. New Phytol; 2014 Feb; 201(3):928-939. PubMed ID: 24304477 [Abstract] [Full Text] [Related]
10. Fall Armyworm-Associated Gut Bacteria Modulate Plant Defense Responses. Acevedo FE, Peiffer M, Tan CW, Stanley BA, Stanley A, Wang J, Jones AG, Hoover K, Rosa C, Luthe D, Felton G. Mol Plant Microbe Interact; 2017 Feb; 30(2):127-137. PubMed ID: 28027025 [Abstract] [Full Text] [Related]
11. Soil chemistry determines whether defensive plant secondary metabolites promote or suppress herbivore growth. Hu L, Wu Z, Robert CAM, Ouyang X, Züst T, Mestrot A, Xu J, Erb M. Proc Natl Acad Sci U S A; 2021 Oct 26; 118(43):. PubMed ID: 34675080 [Abstract] [Full Text] [Related]
12. Silicon Supplementation of Maize Impacts Fall Armyworm Colonization and Increases Predator Attraction. Pereira P, Nascimento AM, de Souza BHS, Peñaflor MFGV. Neotrop Entomol; 2021 Aug 26; 50(4):654-661. PubMed ID: 34184235 [Abstract] [Full Text] [Related]
13. Intraspecific differences in plant defense induction by fall armyworm strains. Acevedo FE, Peiffer M, Ray S, Meagher R, Luthe DS, Felton GW. New Phytol; 2018 Apr 26; 218(1):310-321. PubMed ID: 29332318 [Abstract] [Full Text] [Related]
14. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Mason CJ, Ray S, Shikano I, Peiffer M, Jones AG, Luthe DS, Hoover K, Felton GW. Proc Natl Acad Sci U S A; 2019 Aug 06; 116(32):15991-15996. PubMed ID: 31332013 [Abstract] [Full Text] [Related]
15. Maize toxin degrades peritrophic matrix proteins and stimulates compensatory transcriptome responses in fall armyworm midgut. Fescemyer HW, Sandoya GV, Gill TA, Ozkan S, Marden JH, Luthe DS. Insect Biochem Mol Biol; 2013 Mar 06; 43(3):280-91. PubMed ID: 23306018 [Abstract] [Full Text] [Related]
16. Bottom-up trait-mediated indirect effects decrease pathogen transmission in a tritrophic system. Elderd BD. Ecology; 2019 Jan 06; 100(1):e02551. PubMed ID: 30536658 [Abstract] [Full Text] [Related]
17. Concerted impacts of antiherbivore defenses and opportunistic Serratia pathogens on the fall armyworm (Spodoptera frugiperda). Mason CJ, Peiffer M, St Clair A, Hoover K, Felton GW. Oecologia; 2022 Jan 06; 198(1):167-178. PubMed ID: 34741665 [Abstract] [Full Text] [Related]
18. Effects of Nitrogen Supply on Induced Defense in Maize (Zea mays) against Fall Armyworm (Spodoptera frugiperda). Wang W, Wang X, Liao H, Feng Y, Guo Y, Shu Y, Wang J. Int J Mol Sci; 2022 Sep 09; 23(18):. PubMed ID: 36142369 [Abstract] [Full Text] [Related]
19. Cowpea volatiles induced by beet armyworm or fall armyworm differentially prime maize plants. Kanagendran A, Turlings TCJ. J Plant Physiol; 2024 Jan 09; 292():154164. PubMed ID: 38141481 [Abstract] [Full Text] [Related]
20. Defensive changes in maize leaves induced by feeding of Mediterranean corn borer larvae. Santiago R, Cao A, Butrón A, López-Malvar A, Rodríguez VM, Sandoya GV, Malvar RA. BMC Plant Biol; 2017 Feb 15; 17(1):44. PubMed ID: 28202014 [Abstract] [Full Text] [Related] Page: [Next] [New Search]