These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


221 related items for PubMed ID: 26998737

  • 21. Kinetic control of thiamin diphosphate activation in enzymes studied by proton-nitrogen correlated NMR spectroscopy.
    Tittmann K, Neef H, Golbik R, Hübner G, Kern D.
    Biochemistry; 2005 Jun 21; 44(24):8697-700. PubMed ID: 15952776
    [Abstract] [Full Text] [Related]

  • 22. Strain and near attack conformers in enzymic thiamin catalysis: X-ray crystallographic snapshots of bacterial transketolase in covalent complex with donor ketoses xylulose 5-phosphate and fructose 6-phosphate, and in noncovalent complex with acceptor aldose ribose 5-phosphate.
    Asztalos P, Parthier C, Golbik R, Kleinschmidt M, Hübner G, Weiss MS, Friedemann R, Wille G, Tittmann K.
    Biochemistry; 2007 Oct 30; 46(43):12037-52. PubMed ID: 17914867
    [Abstract] [Full Text] [Related]

  • 23. The mechanism of a one-substrate transketolase reaction. Part II.
    Solovjeva ON.
    Anal Biochem; 2021 Jan 15; 613():114022. PubMed ID: 33217405
    [Abstract] [Full Text] [Related]

  • 24. The role of cysteine 160 in thiamine diphosphate binding of the Calvin-Benson-Bassham cycle transketolase of Rhodobacter sphaeroides.
    Bobst CE, Tabita FR.
    Arch Biochem Biophys; 2004 Jun 01; 426(1):43-54. PubMed ID: 15130781
    [Abstract] [Full Text] [Related]

  • 25. Flexibility of thiamine diphosphate revealed by kinetic crystallographic studies of the reaction of pyruvate-ferredoxin oxidoreductase with pyruvate.
    Cavazza C, Contreras-Martel C, Pieulle L, Chabrière E, Hatchikian EC, Fontecilla-Camps JC.
    Structure; 2006 Feb 01; 14(2):217-24. PubMed ID: 16472741
    [Abstract] [Full Text] [Related]

  • 26. Structure and properties of an engineered transketolase from maize.
    Gerhardt S, Echt S, Busch M, Freigang J, Auerbach G, Bader G, Martin WF, Bacher A, Huber R, Fischer M.
    Plant Physiol; 2003 Aug 01; 132(4):1941-9. PubMed ID: 12913150
    [Abstract] [Full Text] [Related]

  • 27. Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate.
    Arjunan P, Chandrasekhar K, Sax M, Brunskill A, Nemeria N, Jordan F, Furey W.
    Biochemistry; 2004 Mar 09; 43(9):2405-11. PubMed ID: 14992577
    [Abstract] [Full Text] [Related]

  • 28. Is transketolase-like protein, TKTL1, transketolase?
    Meshalkina LE, Drutsa VL, Koroleva ON, Solovjeva ON, Kochetov GA.
    Biochim Biophys Acta; 2013 Mar 09; 1832(3):387-90. PubMed ID: 23261987
    [Abstract] [Full Text] [Related]

  • 29. Thiamine biosensor based on oxidative trapping of enzyme-substrate intermediate.
    Halma M, Doumèche B, Hecquet L, Prévot V, Mousty C, Charmantray F.
    Biosens Bioelectron; 2017 Jan 15; 87():850-857. PubMed ID: 27657847
    [Abstract] [Full Text] [Related]

  • 30. Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 A resolution.
    Nikkola M, Lindqvist Y, Schneider G.
    J Mol Biol; 1994 May 06; 238(3):387-404. PubMed ID: 8176731
    [Abstract] [Full Text] [Related]

  • 31. Tetrahedral intermediates in thiamin diphosphate-dependent decarboxylations exist as a 1',4'-imino tautomeric form of the coenzyme, unlike the michaelis complex or the free coenzyme.
    Nemeria N, Baykal A, Joseph E, Zhang S, Yan Y, Furey W, Jordan F.
    Biochemistry; 2004 Jun 01; 43(21):6565-75. PubMed ID: 15157089
    [Abstract] [Full Text] [Related]

  • 32. A DFT study of solvation effects on the tautomeric equilibrium and catalytic ylide generation of thiamin models.
    Alstrup Lie M, Schiøtt B.
    J Comput Chem; 2008 May 01; 29(7):1037-47. PubMed ID: 18058864
    [Abstract] [Full Text] [Related]

  • 33. Two active site arginines are critical determinants of substrate binding and catalysis in MenD: a thiamine-dependent enzyme in menaquinone biosynthesis.
    Qin M, Song H, Dai X, Chen Y, Guo Z.
    Biochem J; 2018 Nov 30; 475(22):3651-3667. PubMed ID: 30341164
    [Abstract] [Full Text] [Related]

  • 34. Structural basis for antibiotic action of the B1 antivitamin 2'-methoxy-thiamine.
    Rabe von Pappenheim F, Aldeghi M, Shome B, Begley T, de Groot BL, Tittmann K.
    Nat Chem Biol; 2020 Nov 30; 16(11):1237-1245. PubMed ID: 32839604
    [Abstract] [Full Text] [Related]

  • 35. A review on research progress of transketolase.
    Zhao J, Zhong CJ.
    Neurosci Bull; 2009 Apr 30; 25(2):94-9. PubMed ID: 19290028
    [Abstract] [Full Text] [Related]

  • 36. New Insights on the Reaction Pathway Leading to Lactyl-ThDP: A Theoretical Approach.
    Lizana I, Jaña GA, Delgado EJ.
    J Chem Inf Model; 2015 Aug 24; 55(8):1640-4. PubMed ID: 26222831
    [Abstract] [Full Text] [Related]

  • 37. Effects of transketolase cofactors on its conformation and stability.
    Esakova OA, Meshalkina LE, Kochetov GA.
    Life Sci; 2005 Nov 19; 78(1):8-13. PubMed ID: 16125202
    [Abstract] [Full Text] [Related]

  • 38. Identification of catalytically important residues in yeast transketolase.
    Wikner C, Nilsson U, Meshalkina L, Udekwu C, Lindqvist Y, Schneider G.
    Biochemistry; 1997 Dec 16; 36(50):15643-9. PubMed ID: 9398292
    [Abstract] [Full Text] [Related]

  • 39. Aspartate 155 of human transketolase is essential for thiamine diphosphate-magnesium binding, and cofactor binding is required for dimer formation.
    Wang JJ, Martin PR, Singleton CK.
    Biochim Biophys Acta; 1997 Sep 05; 1341(2):165-72. PubMed ID: 9357955
    [Abstract] [Full Text] [Related]

  • 40. Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation.
    Hohmann S, Meacock PA.
    Biochim Biophys Acta; 1998 Jun 29; 1385(2):201-19. PubMed ID: 9655908
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.