These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
823 related items for PubMed ID: 27001212
1. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). Savoi S, Wong DC, Arapitsas P, Miculan M, Bucchetti B, Peterlunger E, Fait A, Mattivi F, Castellarin SD. BMC Plant Biol; 2016 Mar 21; 16():67. PubMed ID: 27001212 [Abstract] [Full Text] [Related]
2. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. Wong DC, Lopez Gutierrez R, Dimopoulos N, Gambetta GA, Castellarin SD. BMC Genomics; 2016 May 31; 17():416. PubMed ID: 27245662 [Abstract] [Full Text] [Related]
3. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Mérillon JM, Cushman JC, Cramer GR. BMC Genomics; 2009 May 08; 10():212. PubMed ID: 19426499 [Abstract] [Full Text] [Related]
4. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR. BMC Genomics; 2007 Nov 22; 8():429. PubMed ID: 18034876 [Abstract] [Full Text] [Related]
5. Transcriptomics Integrated with Free and Bound Terpenoid Aroma Profiling during "Shine Muscat" (Vitis labrusca × V. vinifera) Grape Berry Development Reveals Coordinate Regulation of MEP Pathway and Terpene Synthase Gene Expression. Wang W, Feng J, Wei L, Khalil-Ur-Rehman M, Nieuwenhuizen NJ, Yang L, Zheng H, Tao J. J Agric Food Chem; 2021 Feb 03; 69(4):1413-1429. PubMed ID: 33481572 [Abstract] [Full Text] [Related]
6. A sense of place: transcriptomics identifies environmental signatures in Cabernet Sauvignon berry skins in the late stages of ripening. Cramer GR, Cochetel N, Ghan R, Destrac-Irvine A, Delrot S. BMC Plant Biol; 2020 Jan 28; 20(1):41. PubMed ID: 31992236 [Abstract] [Full Text] [Related]
7. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B, Amrine KC, Collins TS, Rivero RM, Vicente AR, Morales-Cruz A, Doyle CL, Ye Z, Allen G, Heymann H, Ebeler SE, Cantu D. Plant Physiol; 2015 Dec 28; 169(4):2422-43. PubMed ID: 26450706 [Abstract] [Full Text] [Related]
8. Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit. Savoi S, Wong DCJ, Degu A, Herrera JC, Bucchetti B, Peterlunger E, Fait A, Mattivi F, Castellarin SD. Front Plant Sci; 2017 Dec 28; 8():1124. PubMed ID: 28740499 [Abstract] [Full Text] [Related]
9. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. Sweetman C, Wong DC, Ford CM, Drew DP. BMC Genomics; 2012 Dec 11; 13():691. PubMed ID: 23227855 [Abstract] [Full Text] [Related]
10. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Castellarin SD, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, DI Gaspero G. Plant Cell Environ; 2007 Nov 11; 30(11):1381-99. PubMed ID: 17897409 [Abstract] [Full Text] [Related]
12. RNA-seq based transcriptomic analysis of CPPU treated grape berries and emission of volatile compounds. Wang W, Khalil-Ur-Rehman M, Feng J, Tao J. J Plant Physiol; 2017 Nov 21; 218():155-166. PubMed ID: 28843071 [Abstract] [Full Text] [Related]
13. The Effect of Water Deficit on Two Greek Vitis vinifera L. Cultivars: Physiology, Grape Composition and Gene Expression during Berry Development. Alatzas A, Theocharis S, Miliordos DE, Leontaridou K, Kanellis AK, Kotseridis Y, Hatzopoulos P, Koundouras S. Plants (Basel); 2021 Sep 18; 10(9):. PubMed ID: 34579479 [Abstract] [Full Text] [Related]
14. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. Fortes AM, Agudelo-Romero P, Silva MS, Ali K, Sousa L, Maltese F, Choi YH, Grimplet J, Martinez-Zapater JM, Verpoorte R, Pais MS. BMC Plant Biol; 2011 Nov 02; 11():149. PubMed ID: 22047180 [Abstract] [Full Text] [Related]
15. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon AF, Testolin R. BMC Genomics; 2006 Jan 24; 7():12. PubMed ID: 16433923 [Abstract] [Full Text] [Related]
18. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. Ghan R, Petereit J, Tillett RL, Schlauch KA, Toubiana D, Fait A, Cramer GR. BMC Plant Biol; 2017 May 30; 17(1):94. PubMed ID: 28558655 [Abstract] [Full Text] [Related]
19. Evolution over the growing season of volatile organic compounds in Viognier (Vitis vinifera L.) grapes under three irrigation regimes. Wang J, Abbey T, Kozak B, Madilao LL, Tindjau R, Del Nin J, Castellarin SD. Food Res Int; 2019 Nov 30; 125():108512. PubMed ID: 31554099 [Abstract] [Full Text] [Related]
20. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA. Planta; 2007 Dec 30; 227(1):101-12. PubMed ID: 17694320 [Abstract] [Full Text] [Related] Page: [Next] [New Search]