These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
244 related items for PubMed ID: 27001399
1. Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem. De Groote F, Kinney AL, Rao AV, Fregly BJ. Ann Biomed Eng; 2016 Oct; 44(10):2922-2936. PubMed ID: 27001399 [Abstract] [Full Text] [Related]
2. Dynamic motion planning of 3D human locomotion using gradient-based optimization. Kim HJ, Wang Q, Rahmatalla S, Swan CC, Arora JS, Abdel-Malek K, Assouline JG. J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851 [Abstract] [Full Text] [Related]
3. Static and dynamic optimization solutions for gait are practically equivalent. Anderson FC, Pandy MG. J Biomech; 2001 Feb; 34(2):153-61. PubMed ID: 11165278 [Abstract] [Full Text] [Related]
4. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach. Heintz S, Gutierrez-Farewik EM. Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088 [Abstract] [Full Text] [Related]
5. Review of Inverse Optimization for Functional and Physiological Considerations Related to the Force-Sharing Problem. Tsirakos D, Baltzopoulos V, Bartlett R. Crit Rev Biomed Eng; 2017 Jul; 45(1-6):511-547. PubMed ID: 29953387 [Abstract] [Full Text] [Related]
6. Simultaneous prediction of muscle and contact forces in the knee during gait. Lin YC, Walter JP, Banks SA, Pandy MG, Fregly BJ. J Biomech; 2010 Mar 22; 43(5):945-52. PubMed ID: 19962703 [Abstract] [Full Text] [Related]
7. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait. Michaud F, Lamas M, Lugrís U, Cuadrado J. J Neuroeng Rehabil; 2021 Jan 28; 18(1):17. PubMed ID: 33509205 [Abstract] [Full Text] [Related]
8. Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim. Porsa S, Lin YC, Pandy MG. Ann Biomed Eng; 2016 Aug 28; 44(8):2542-2557. PubMed ID: 26715209 [Abstract] [Full Text] [Related]
9. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. Thelen DG, Anderson FC. J Biomech; 2006 Aug 28; 39(6):1107-15. PubMed ID: 16023125 [Abstract] [Full Text] [Related]
13. Optimization-based prediction of asymmetric human gait. Xiang Y, Arora JS, Abdel-Malek K. J Biomech; 2011 Feb 24; 44(4):683-93. PubMed ID: 21092968 [Abstract] [Full Text] [Related]
14. Dynamic Optimization of FES and Orthosis-Based Walking Using Simple Models. Sharma N, Mushahwar V, Stein R. IEEE Trans Neural Syst Rehabil Eng; 2014 Jan 24; 22(1):114-26. PubMed ID: 24122568 [Abstract] [Full Text] [Related]
15. Bilevel Optimization for Cost Function Determination in Dynamic Simulation of Human Gait. Nguyen VQ, Johnson RT, Sup FC, Umberger BR. IEEE Trans Neural Syst Rehabil Eng; 2019 Jul 24; 27(7):1426-1435. PubMed ID: 31199264 [Abstract] [Full Text] [Related]
16. A hybrid static optimisation method to estimate muscle forces during muscle co-activation. Son J, Hwang S, Kim Y. Comput Methods Biomech Biomed Engin; 2012 Jul 24; 15(3):249-54. PubMed ID: 21302162 [Abstract] [Full Text] [Related]
17. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait. Bogey RA, Perry J, Gitter AJ. IEEE Trans Neural Syst Rehabil Eng; 2005 Sep 24; 13(3):302-10. PubMed ID: 16200754 [Abstract] [Full Text] [Related]
18. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking. Fraysse F, Dumas R, Cheze L, Wang X. J Biomech; 2009 Oct 16; 42(14):2357-62. PubMed ID: 19699479 [Abstract] [Full Text] [Related]
19. Determination of ankle muscle power in normal gait using an EMG-to-force processing approach. Bogey RA, Gitter AJ, Barnes LA. J Electromyogr Kinesiol; 2010 Feb 16; 20(1):46-54. PubMed ID: 19201619 [Abstract] [Full Text] [Related]
20. The necessity of physiological muscle parameters for computing the muscle forces: application to lower extremity loading during pedalling. Cadová M, Vilímek M. Acta Bioeng Biomech; 2009 Feb 16; 11(3):59-64. PubMed ID: 20131752 [Abstract] [Full Text] [Related] Page: [Next] [New Search]