These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
213 related items for PubMed ID: 27008191
1. Flexible models for spike count data with both over- and under- dispersion. Stevenson IH. J Comput Neurosci; 2016 Aug; 41(1):29-43. PubMed ID: 27008191 [Abstract] [Full Text] [Related]
2. Modeling stimulus-dependent variability improves decoding of population neural responses. Ghanbari A, Lee CM, Read HL, Stevenson IH. J Neural Eng; 2019 Oct 25; 16(6):066018. PubMed ID: 31404915 [Abstract] [Full Text] [Related]
3. Dynamic Modeling of Spike Count Data With Conway-Maxwell Poisson Variability. Wei G, Stevenson IH. Neural Comput; 2023 Jun 12; 35(7):1187-1208. PubMed ID: 37187169 [Abstract] [Full Text] [Related]
5. Dethroning the Fano Factor: A Flexible, Model-Based Approach to Partitioning Neural Variability. Charles AS, Park M, Weller JP, Horwitz GD, Pillow JW. Neural Comput; 2018 Apr 12; 30(4):1012-1045. PubMed ID: 29381442 [Abstract] [Full Text] [Related]
6. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Jackson BS. Neural Comput; 2004 Oct 12; 16(10):2125-95. PubMed ID: 15333210 [Abstract] [Full Text] [Related]
7. Application of the Conway-Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes. Lord D, Guikema SD, Geedipally SR. Accid Anal Prev; 2008 May 12; 40(3):1123-34. PubMed ID: 18460381 [Abstract] [Full Text] [Related]
8. Using Tweedie distributions for fitting spike count data. Moshitch D, Nelken I. J Neurosci Methods; 2014 Mar 30; 225():13-28. PubMed ID: 24440773 [Abstract] [Full Text] [Related]
9. Distortion of neural signals by spike coding. Goldberg DH, Andreou AG. Neural Comput; 2007 Oct 30; 19(10):2797-839. PubMed ID: 17716013 [Abstract] [Full Text] [Related]
10. Linear-nonlinear-time-warp-poisson models of neural activity. Lawlor PN, Perich MG, Miller LE, Kording KP. J Comput Neurosci; 2018 Dec 30; 45(3):173-191. PubMed ID: 30294750 [Abstract] [Full Text] [Related]
12. Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model. Wiener MC, Richmond BJ. J Neurosci; 2003 Mar 15; 23(6):2394-406. PubMed ID: 12657699 [Abstract] [Full Text] [Related]
14. Testing the odds of inherent vs. observed overdispersion in neural spike counts. Taouali W, Benvenuti G, Wallisch P, Chavane F, Perrinet LU. J Neurophysiol; 2016 Jan 01; 115(1):434-44. PubMed ID: 26445864 [Abstract] [Full Text] [Related]
15. Multiscale analysis of neural spike trains. Ramezan R, Marriott P, Chenouri S. Stat Med; 2014 Jan 30; 33(2):238-56. PubMed ID: 23996238 [Abstract] [Full Text] [Related]
16. Information transmission using non-poisson regular firing. Koyama S, Omi T, Kass RE, Shinomoto S. Neural Comput; 2013 Apr 30; 25(4):854-76. PubMed ID: 23339613 [Abstract] [Full Text] [Related]
17. Application of the Hyper-Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes. Khazraee SH, Sáez-Castillo AJ, Geedipally SR, Lord D. Risk Anal; 2015 May 30; 35(5):919-30. PubMed ID: 25385093 [Abstract] [Full Text] [Related]
19. The time-rescaling theorem and its application to neural spike train data analysis. Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM. Neural Comput; 2002 Feb 30; 14(2):325-46. PubMed ID: 11802915 [Abstract] [Full Text] [Related]