These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
319 related items for PubMed ID: 27010514
21. Ecofriendly Synthesis of l-Carnosine in Metabolically Engineered Corynebacterium glutamicum by Reinforcing Precursor Accumulation. Kim M, Ko YJ, Jeong DW, Jeong WY, Han SO. ACS Synth Biol; 2021 Jun 18; 10(6):1553-1562. PubMed ID: 34019768 [Abstract] [Full Text] [Related]
22. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production. Jo S, Yoon J, Lee SM, Um Y, Han SO, Woo HM. J Biotechnol; 2017 Sep 20; 258():69-78. PubMed ID: 28153765 [Abstract] [Full Text] [Related]
23. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. Appl Environ Microbiol; 2005 Dec 20; 71(12):8587-96. PubMed ID: 16332851 [Abstract] [Full Text] [Related]
25. Deciphering the crucial roles of AraC-type transcriptional regulator Cgl2680 on NADPH metabolism and L-lysine production in Corynebacterium glutamicum. Wang L, Yu H, Xu J, Ruan H, Zhang W. World J Microbiol Biotechnol; 2020 May 26; 36(6):82. PubMed ID: 32458148 [Abstract] [Full Text] [Related]
26. Metabolic engineering of Corynebacterium glutamicum WM001 to improve l-isoleucine production. Zhang Y, Liu Y, Zhang S, Ma W, Wang J, Yin L, Wang X. Biotechnol Appl Biochem; 2021 Jun 26; 68(3):568-584. PubMed ID: 32474971 [Abstract] [Full Text] [Related]
28. Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants. Siedler S, Lindner SN, Bringer S, Wendisch VF, Bott M. Appl Microbiol Biotechnol; 2013 Jan 26; 97(1):143-52. PubMed ID: 22851018 [Abstract] [Full Text] [Related]
29. Enhancing (L)-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum. Wang J, Wen B, Wang J, Xu Q, Zhang C, Chen N, Xie X. Appl Biochem Biotechnol; 2013 Sep 26; 171(1):20-30. PubMed ID: 23813403 [Abstract] [Full Text] [Related]
30. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum. Dong X, Zhao Y, Hu J, Li Y, Wang X. Enzyme Microb Technol; 2016 Nov 26; 93-94():70-78. PubMed ID: 27702487 [Abstract] [Full Text] [Related]
31. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Xu J, Han M, Zhang J, Guo Y, Zhang W. Amino Acids; 2014 Sep 26; 46(9):2165-75. PubMed ID: 24879631 [Abstract] [Full Text] [Related]
32. Efficient hydroxyproline production from glucose in minimal media by Corynebacterium glutamicum. Falcioni F, Bühler B, Schmid A. Biotechnol Bioeng; 2015 Feb 26; 112(2):322-30. PubMed ID: 25163732 [Abstract] [Full Text] [Related]
33. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X. Microb Cell Fact; 2016 Aug 12; 15(1):141. PubMed ID: 27520031 [Abstract] [Full Text] [Related]
34. Overexpression of ppc and lysC to improve the production of 4-hydroxyisoleucine and its precursor l-isoleucine in recombinant Corynebacterium glutamicum ssp. lactofermentum. Shi F, Fang H, Niu T, Lu Z. Enzyme Microb Technol; 2016 Jun 12; 87-88():79-85. PubMed ID: 27178798 [Abstract] [Full Text] [Related]
35. (L)-Valine production with minimization of by-products' synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Hou X, Chen X, Zhang Y, Qian H, Zhang W. Amino Acids; 2012 Dec 12; 43(6):2301-11. PubMed ID: 22552525 [Abstract] [Full Text] [Related]
36. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum. Wu W, Zhang Y, Liu D, Chen Z. Metab Eng; 2019 Mar 12; 52():77-86. PubMed ID: 30458240 [Abstract] [Full Text] [Related]
37. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping. Xu JZ, Ruan HZ, Chen XL, Zhang F, Zhang W. Microb Cell Fact; 2019 Apr 03; 18(1):65. PubMed ID: 30943966 [Abstract] [Full Text] [Related]
38. Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Sahm H, Eggeling L, de Graaf AA. Biol Chem; 2000 Apr 03; 381(9-10):899-910. PubMed ID: 11076021 [Abstract] [Full Text] [Related]
39. High production of 4-hydroxyisoleucine in Corynebacterium glutamicum by multistep metabolic engineering. Zhang C, Li Y, Ma J, Liu Y, He J, Li Y, Zhu F, Meng J, Zhan J, Li Z, Zhao L, Ma Q, Fan X, Xu Q, Xie X, Chen N. Metab Eng; 2018 Sep 03; 49():287-298. PubMed ID: 30223026 [Abstract] [Full Text] [Related]
40. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system. Zhu N, Xia H, Yang J, Zhao X, Chen T. Biotechnol Lett; 2014 Mar 03; 36(3):553-60. PubMed ID: 24129953 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]