These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
137 related items for PubMed ID: 2701374
1. Cerebral ischaemia studied by nuclear magnetic resonance spectroscopy. Williams SR, Crockard HA, Gadian DG. Cerebrovasc Brain Metab Rev; 1989; 1(2):91-114. PubMed ID: 2701374 [Abstract] [Full Text] [Related]
2. In vivo tissue analysis by NMR spectroscopy. den Hollander JA. Diagn Imaging Clin Med; 1986; 55(1-2):9-19. PubMed ID: 3011347 [Abstract] [Full Text] [Related]
3. Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy. II. Changes during ischaemia. Crockard HA, Gadian DG, Frackowiak RS, Proctor E, Allen K, Williams SR, Russell RW. J Cereb Blood Flow Metab; 1987 Aug; 7(4):394-402. PubMed ID: 3611203 [Abstract] [Full Text] [Related]
4. Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy. I. Methodology. Gadian DG, Frackowiak RS, Crockard HA, Proctor E, Allen K, Williams SR, Russell RW. J Cereb Blood Flow Metab; 1987 Apr; 7(2):199-206. PubMed ID: 3558501 [Abstract] [Full Text] [Related]
5. [Studies of experimental cerebral ischemia with NMR spectroscopy]. Hossmann KA. Arzneimittelforschung; 1991 Mar; 41(3A):292-8. PubMed ID: 1859498 [Abstract] [Full Text] [Related]
6. A 31P nuclear magnetic resonance in vivo study of cerebral ischaemia in the gerbil. Thulborn KR, du Boulay GH, Duchen LW, Radda G. J Cereb Blood Flow Metab; 1982 Sep; 2(3):299-306. PubMed ID: 7096457 [Abstract] [Full Text] [Related]
7. Investigation of cerebral energy metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Hope PL, Reynolds EO. Clin Perinatol; 1985 Feb; 12(1):261-75. PubMed ID: 3978989 [Abstract] [Full Text] [Related]
8. Phosphorus nuclear magnetic resonance: a non-invasive technique for the study of muscle bioenergetics during exercise. Sapega AA, Sokolow DP, Graham TJ, Chance B. Med Sci Sports Exerc; 1993 Jun; 25(6):656-66. PubMed ID: 8321101 [Abstract] [Full Text] [Related]
9. Phosphorus nuclear magnetic resonance: a non-invasive technique for the study of muscle bioenergetics during exercise. Sapega AA, Sokolow DP, Graham TJ, Chance B. Med Sci Sports Exerc; 1987 Aug; 19(4):410-20. PubMed ID: 3309542 [Abstract] [Full Text] [Related]
10. Magnetic resonance spectroscopy of tumors and potential in vivo clinical applications: a review. Daly PF, Cohen JS. Cancer Res; 1989 Feb 15; 49(4):770-9. PubMed ID: 2643462 [Abstract] [Full Text] [Related]
11. [The effect of verapamil on the dynamics of decrease in the brain levels of phosphorus macroergs during ischemia studied by 31P-NMR in vivo]. Likhodiĭ SS, Likhodiĭ SS, Sibel'dina LA, Semenova NA. Vopr Med Khim; 1988 Feb 15; 34(6):109-13. PubMed ID: 3238932 [Abstract] [Full Text] [Related]
12. Effects of chemotherapy by 1,3-bis(2-chloroethyl)-1-nitrosourea on single-quantum- and triple-quantum-filtered 23Na and 31P nuclear magnetic resonance of the subcutaneously implanted 9L glioma. Winter PM, Poptani H, Bansal N. Cancer Res; 2001 Mar 01; 61(5):2002-7. PubMed ID: 11280759 [Abstract] [Full Text] [Related]
13. Characterization of tissue damage in multiple sclerosis by nuclear magnetic resonance. Barkhof F, van Walderveen M. Philos Trans R Soc Lond B Biol Sci; 1999 Oct 29; 354(1390):1675-86. PubMed ID: 10603619 [Abstract] [Full Text] [Related]
14. Observation of intramyocellular lipids by 1H-magnetic resonance spectroscopy. Boesch C, Kreis R. Ann N Y Acad Sci; 2000 May 29; 904():25-31. PubMed ID: 10865706 [Abstract] [Full Text] [Related]
15. Magnetic resonance spectroscopy applied to clinical oncology. Leach MO. Technol Health Care; 1994 Dec 29; 2(4):235-46. PubMed ID: 7842308 [Abstract] [Full Text] [Related]
16. Heterogeneous metabolic changes in the calf muscle of the rat during ischaemia-reperfusion: in vivo analysis by 31P nuclear magnetic resonance chemical shift imaging and 1H magnetic resonance imaging. Morikawa S, Inubushi T, Kito K. Cardiovasc Surg; 1993 Aug 29; 1(4):337-42. PubMed ID: 8076056 [Abstract] [Full Text] [Related]
17. [31P NMR in vivo study of a rat brain with phosphate metabolism disorders after bilateral focal compression ischemia]. Semenova NA, Konradov AA, Romanova GA. Biofizika; 1996 Aug 29; 41(5):1106-11. PubMed ID: 9011193 [Abstract] [Full Text] [Related]
18. Characterization of metabolites in intact Streptomyces citricolor culture supernatants using high-resolution nuclear magnetic resonance and directly coupled high-pressure liquid chromatography-nuclear magnetic resonance spectroscopy. Abel CB, Lindon JC, Noble D, Rudd BA, Sidebottom PJ, Nicholson JK. Anal Biochem; 1999 Jun 01; 270(2):220-30. PubMed ID: 10334839 [Abstract] [Full Text] [Related]
19. MRL/lpr mice have alterations in brain metabolism as shown with [1H-13C] NMR spectroscopy. Alexander JJ, Zwingmann C, Quigg R. Neurochem Int; 2005 Jul 01; 47(1-2):143-51. PubMed ID: 15893408 [Abstract] [Full Text] [Related]
20. The current status of magnetic resonance spectroscopy--basic and clinical aspects. Chan L. West J Med; 1985 Dec 01; 143(6):773-81. PubMed ID: 3911590 [Abstract] [Full Text] [Related] Page: [Next] [New Search]