These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
395 related items for PubMed ID: 27018980
1. Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice. Sala-Rabanal M, Hirayama BA, Ghezzi C, Liu J, Huang SC, Kepe V, Koepsell H, Yu A, Powell DR, Thorens B, Wright EM, Barrio JR. J Physiol; 2016 Aug 01; 594(15):4425-38. PubMed ID: 27018980 [Abstract] [Full Text] [Related]
2. Intestinal absorption of glucose in mice as determined by positron emission tomography. Sala-Rabanal M, Ghezzi C, Hirayama BA, Kepe V, Liu J, Barrio JR, Wright EM. J Physiol; 2018 Jul 01; 596(13):2473-2489. PubMed ID: 29707805 [Abstract] [Full Text] [Related]
3. Functional expression of SGLTs in rat brain. Yu AS, Hirayama BA, Timbol G, Liu J, Basarah E, Kepe V, Satyamurthy N, Huang SC, Wright EM, Barrio JR. Am J Physiol Cell Physiol; 2010 Dec 01; 299(6):C1277-84. PubMed ID: 20826762 [Abstract] [Full Text] [Related]
4. Sodium-glucose cotransporters: new targets of cancer therapy? Madunić IV, Madunić J, Breljak D, Karaica D, Sabolić I. Arh Hig Rada Toksikol; 2018 Dec 01; 69(4):278-285. PubMed ID: 30864374 [Abstract] [Full Text] [Related]
5. Positron emission tomography of sodium glucose cotransport activity in high grade astrocytomas. Kepe V, Scafoglio C, Liu J, Yong WH, Bergsneider M, Huang SC, Barrio JR, Wright EM. J Neurooncol; 2018 Jul 01; 138(3):557-569. PubMed ID: 29525972 [Abstract] [Full Text] [Related]
6. Functional expression of sodium-glucose transporters in cancer. Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, Moatamed NA, Huang J, Koepsell H, Barrio JR, Wright EM. Proc Natl Acad Sci U S A; 2015 Jul 28; 112(30):E4111-9. PubMed ID: 26170283 [Abstract] [Full Text] [Related]
7. Does 2-FDG PET Accurately Reflect Quantitative In Vivo Glucose Utilization? Barrio JR, Huang SC, Satyamurthy N, Scafoglio CS, Yu AS, Alavi A, Krohn KA. J Nucl Med; 2020 Jun 28; 61(6):931-937. PubMed ID: 31676728 [Abstract] [Full Text] [Related]
9. Distribution of glucose transporters in renal diseases. Szablewski L. J Biomed Sci; 2017 Aug 31; 24(1):64. PubMed ID: 28854935 [Abstract] [Full Text] [Related]
10. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors. Blaschek W. Planta Med; 2017 Aug 31; 83(12-13):985-993. PubMed ID: 28395363 [Abstract] [Full Text] [Related]
11. Dapagliflozin Binds Specifically to Sodium-Glucose Cotransporter 2 in the Proximal Renal Tubule. Ghezzi C, Yu AS, Hirayama BA, Kepe V, Liu J, Scafoglio C, Powell DR, Huang SC, Satyamurthy N, Barrio JR, Wright EM. J Am Soc Nephrol; 2017 Mar 31; 28(3):802-810. PubMed ID: 27620988 [Abstract] [Full Text] [Related]
12. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane. Chichger H, Cleasby ME, Srai SK, Unwin RJ, Debnam ES, Marks J. Exp Physiol; 2016 Jun 01; 101(6):731-42. PubMed ID: 27164183 [Abstract] [Full Text] [Related]
13. Molecular Imaging of GLUT1 and GLUT5 in Breast Cancer: A Multitracer Positron Emission Tomography Imaging Study in Mice. Wuest M, Hamann I, Bouvet V, Glubrecht D, Marshall A, Trayner B, Soueidan OM, Krys D, Wagner M, Cheeseman C, West F, Wuest F. Mol Pharmacol; 2018 Feb 01; 93(2):79-89. PubMed ID: 29142019 [Abstract] [Full Text] [Related]
14. Comparison of the transcellular transport of FDG and D-glucose by the kidney epithelial cell line, LLC-PK1. Kobayashi M, Shikano N, Nishii R, Kiyono Y, Araki H, Nishi K, Oh M, Okudaira H, Ogura M, Yoshimoto M, Okazawa H, Fujibayashi Y, Kawai K. Nucl Med Commun; 2010 Feb 01; 31(2):141-6. PubMed ID: 19949354 [Abstract] [Full Text] [Related]
15. In Vivo Functional Assessment of Sodium-Glucose Cotransporters (SGLTs) Using [18F]Me4FDG PET in Rats. Matsusaka Y, Chen X, Arias-Loza P, Werner RA, Nose N, Sasaki T, Rowe SP, Pomper MG, Lapa C, Higuchi T. Mol Imaging; 2022 Feb 01; 2022():4635171. PubMed ID: 35903251 [Abstract] [Full Text] [Related]
16. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Ghezzi C, Loo DDF, Wright EM. Diabetologia; 2018 Oct 01; 61(10):2087-2097. PubMed ID: 30132032 [Abstract] [Full Text] [Related]
17. Regional distribution of SGLT activity in rat brain in vivo. Yu AS, Hirayama BA, Timbol G, Liu J, Diez-Sampedro A, Kepe V, Satyamurthy N, Huang SC, Wright EM, Barrio JR. Am J Physiol Cell Physiol; 2013 Feb 01; 304(3):C240-7. PubMed ID: 23151803 [Abstract] [Full Text] [Related]
18. Fructose reabsorption by rat proximal tubules: role of Na+-linked cotransporters and the effect of dietary fructose. Gonzalez-Vicente A, Cabral PD, Hong NJ, Asirwatham J, Saez F, Garvin JL. Am J Physiol Renal Physiol; 2019 Mar 01; 316(3):F473-F480. PubMed ID: 30565998 [Abstract] [Full Text] [Related]
19. Glucose transporters in cardiovascular system in health and disease. Bertrand L, Auquier J, Renguet E, Angé M, Cumps J, Horman S, Beauloye C. Pflugers Arch; 2020 Sep 01; 472(9):1385-1399. PubMed ID: 32809061 [Abstract] [Full Text] [Related]
20. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. Vestri S, Okamoto MM, de Freitas HS, Aparecida Dos Santos R, Nunes MT, Morimatsu M, Heimann JC, Machado UF. J Membr Biol; 2001 Jul 15; 182(2):105-12. PubMed ID: 11447502 [Abstract] [Full Text] [Related] Page: [Next] [New Search]