These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


264 related items for PubMed ID: 27025615

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Neutrophil extracellular traps and the dysfunctional innate immune response of cystic fibrosis lung disease: a review.
    Law SM, Gray RD.
    J Inflamm (Lond); 2017; 14():29. PubMed ID: 29299029
    [Abstract] [Full Text] [Related]

  • 4. Understanding the Entanglement: Neutrophil Extracellular Traps (NETs) in Cystic Fibrosis.
    Martínez-Alemán SR, Campos-García L, Palma-Nicolas JP, Hernández-Bello R, González GM, Sánchez-González A.
    Front Cell Infect Microbiol; 2017; 7():104. PubMed ID: 28428948
    [Abstract] [Full Text] [Related]

  • 5. Neutrophil extracellular traps are present in the airways of ENaC-overexpressing mice with cystic fibrosis-like lung disease.
    Tucker SL, Sarr D, Rada B.
    BMC Immunol; 2021 Jan 21; 22(1):7. PubMed ID: 33478382
    [Abstract] [Full Text] [Related]

  • 6. Harnessing Neutrophil Survival Mechanisms during Chronic Infection by Pseudomonas aeruginosa: Novel Therapeutic Targets to Dampen Inflammation in Cystic Fibrosis.
    Marteyn BS, Burgel PR, Meijer L, Witko-Sarsat V.
    Front Cell Infect Microbiol; 2017 Jan 21; 7():243. PubMed ID: 28713772
    [Abstract] [Full Text] [Related]

  • 7. Serum anti-PAD4 autoantibodies are present in cystic fibrosis children and increase with age and lung disease severity.
    Linnemann RW, Yadav R, Zhang C, Sarr D, Rada B, Stecenko AA.
    Autoimmunity; 2022 Mar 21; 55(2):109-117. PubMed ID: 35199621
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis.
    Gray RD, Hardisty G, Regan KH, Smith M, Robb CT, Duffin R, Mackellar A, Felton JM, Paemka L, McCullagh BN, Lucas CD, Dorward DA, McKone EF, Cooke G, Donnelly SC, Singh PK, Stoltz DA, Haslett C, McCray PB, Whyte MKB, Rossi AG, Davidson DJ.
    Thorax; 2018 Feb 21; 73(2):134-144. PubMed ID: 28916704
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Pseudomonas aeruginosa isolates from cystic fibrosis patients induce neutrophil extracellular traps with different morphologies that could correlate with their disease severity.
    Martínez-Alemán S, Bustamante AE, Jimenez-Valdes RJ, González GM, Sánchez-González A.
    Int J Med Microbiol; 2020 Oct 21; 310(7):151451. PubMed ID: 33092695
    [Abstract] [Full Text] [Related]

  • 13. Engineering in vitro models of cystic fibrosis lung disease using neutrophil extracellular trap inspired biomaterials.
    Boboltz AM, Yang S, Duncan GA.
    bioRxiv; 2023 Jun 28. PubMed ID: 37425779
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis.
    Rada B.
    Pathogens; 2017 Mar 09; 6(1):. PubMed ID: 28282951
    [Abstract] [Full Text] [Related]

  • 17. Free DNA in cystic fibrosis airway fluids correlates with airflow obstruction.
    Marcos V, Zhou-Suckow Z, Önder Yildirim A, Bohla A, Hector A, Vitkov L, Krautgartner WD, Stoiber W, Griese M, Eickelberg O, Mall MA, Hartl D.
    Mediators Inflamm; 2015 Mar 09; 2015():408935. PubMed ID: 25918476
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.