These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
398 related items for PubMed ID: 27028989
1. Synthesis, Optical Properties, and Multiplexed Raman Bio-Imaging of Surface Roughness-Controlled Nanobridged Nanogap Particles. Lee JH, Oh JW, Nam SH, Cha YS, Kim GH, Rhim WK, Kim NH, Kim J, Han SW, Suh YD, Nam JM. Small; 2016 Sep; 12(34):4726-34. PubMed ID: 27028989 [Abstract] [Full Text] [Related]
2. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Nam JM, Oh JW, Lee H, Suh YD. Acc Chem Res; 2016 Dec 20; 49(12):2746-2755. PubMed ID: 27993009 [Abstract] [Full Text] [Related]
3. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. Oh JW, Lim DK, Kim GH, Suh YD, Nam JM. J Am Chem Soc; 2014 Oct 08; 136(40):14052-9. PubMed ID: 25198151 [Abstract] [Full Text] [Related]
4. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Lim DK, Jeon KS, Hwang JH, Kim H, Kwon S, Suh YD, Nam JM. Nat Nanotechnol; 2011 May 29; 6(7):452-60. PubMed ID: 21623360 [Abstract] [Full Text] [Related]
5. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging. Li J, Zhu Z, Zhu B, Ma Y, Lin B, Liu R, Song Y, Lin H, Tu S, Yang C. Anal Chem; 2016 Aug 02; 88(15):7828-36. PubMed ID: 27385563 [Abstract] [Full Text] [Related]
6. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. Hu C, Shen J, Yan J, Zhong J, Qin W, Liu R, Aldalbahi A, Zuo X, Song S, Fan C, He D. Nanoscale; 2016 Jan 28; 8(4):2090-6. PubMed ID: 26701141 [Abstract] [Full Text] [Related]
7. SERS-encoded nanogapped plasmonic nanoparticles: growth of metallic nanoshell by templating redox-active polymer brushes. Song J, Duan B, Wang C, Zhou J, Pu L, Fang Z, Wang P, Lim TT, Duan H. J Am Chem Soc; 2014 May 14; 136(19):6838-41. PubMed ID: 24773367 [Abstract] [Full Text] [Related]
8. Recent Advances in the Synthesis of Intra-Nanogap Au Plasmonic Nanostructures for Bioanalytical Applications. Yang W, Lim DK. Adv Mater; 2020 Dec 14; 32(51):e2002219. PubMed ID: 33063429 [Abstract] [Full Text] [Related]
9. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes. Lee JH, You MH, Kim GH, Nam JM. Nano Lett; 2014 Nov 12; 14(11):6217-25. PubMed ID: 25275930 [Abstract] [Full Text] [Related]
10. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering. Lee H, Lee JH, Jin SM, Suh YD, Nam JM. Nano Lett; 2013 Nov 12; 13(12):6113-21. PubMed ID: 24256433 [Abstract] [Full Text] [Related]
14. Intra-nanoparticle plasmonic nanogap based spatial-confinement SERS analysis of polypeptides. Li R, Hu Y, Sun X, Zhang Z, Chen K, Liu Q, Chen X. Talanta; 2024 Jun 01; 273():125899. PubMed ID: 38484502 [Abstract] [Full Text] [Related]
15. Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering. Cao YQ, Qin K, Zhu L, Qian X, Zhang XJ, Wu D, Li AD. Sci Rep; 2017 Jul 12; 7(1):5161. PubMed ID: 28701788 [Abstract] [Full Text] [Related]
16. Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles. Yokota Y, Ueno K, Misawa H. Chem Commun (Camb); 2011 Mar 28; 47(12):3505-7. PubMed ID: 21318204 [Abstract] [Full Text] [Related]
17. Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array. Xia L, Yang Z, Yin S, Guo W, Li S, Xie W, Huang D, Deng Q, Shi H, Cui H, Du C. Opt Express; 2013 May 06; 21(9):11349-55. PubMed ID: 23669991 [Abstract] [Full Text] [Related]
18. Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells. Lee JH, Nam JM, Jeon KS, Lim DK, Kim H, Kwon S, Lee H, Suh YD. ACS Nano; 2012 Nov 27; 6(11):9574-84. PubMed ID: 23036132 [Abstract] [Full Text] [Related]
19. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications. Khlebtsov NG, Lin L, Khlebtsov BN, Ye J. Theranostics; 2020 Nov 27; 10(5):2067-2094. PubMed ID: 32089735 [Abstract] [Full Text] [Related]
20. Plasmonic Dual-Gap Nanodumbbells for Label-Free On-Particle Raman DNA Assays. Kim JM, Kim J, Choi K, Nam JM. Adv Mater; 2023 Apr 27; 35(15):e2208250. PubMed ID: 36680474 [Abstract] [Full Text] [Related] Page: [Next] [New Search]