These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 27035151

  • 1. Ephrin-B/EphB Signaling Is Required for Normal Innervation of Lingual Gustatory Papillae.
    Treffy RW, Collins D, Hoshino N, Ton S, Katsevman GA, Oleksiak M, Runge EM, Cho D, Russo M, Spec A, Gomulka J, Henkemeyer M, Rochlin MW.
    Dev Neurosci; 2016; 38(2):124-38. PubMed ID: 27035151
    [Abstract] [Full Text] [Related]

  • 2. Distinct roles for Sema3A, Sema3F, and an unidentified trophic factor in controlling the advance of geniculate axons to gustatory lingual epithelium.
    Vilbig R, Cosmano J, Giger R, Rochlin MW.
    J Neurocytol; 2004 Dec; 33(6):591-606. PubMed ID: 16217616
    [Abstract] [Full Text] [Related]

  • 3. Distinctive spatiotemporal expression patterns for neurotrophins develop in gustatory papillae and lingual tissues in embryonic tongue organ cultures.
    Nosrat CA, MacCallum DK, Mistretta CM.
    Cell Tissue Res; 2001 Jan; 303(1):35-45. PubMed ID: 11236003
    [Abstract] [Full Text] [Related]

  • 4. Brain-derived neurotrophic factor attracts geniculate ganglion neurites during embryonic targeting.
    Hoshino N, Vatterott P, Egwiekhor A, Rochlin MW.
    Dev Neurosci; 2010 Aug; 32(3):184-96. PubMed ID: 20639634
    [Abstract] [Full Text] [Related]

  • 5. Initial innervation of embryonic rat tongue and developing taste papillae: nerves follow distinctive and spatially restricted pathways.
    Mbiene JP, Mistretta CM.
    Acta Anat (Basel); 1997 Aug; 160(3):139-58. PubMed ID: 9718388
    [Abstract] [Full Text] [Related]

  • 6. Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue.
    Krimm RF, Miller KK, Kitzman PH, Davis BM, Albers KM.
    Dev Biol; 2001 Apr 15; 232(2):508-21. PubMed ID: 11401409
    [Abstract] [Full Text] [Related]

  • 7. Lingual BDNF and NT-3 mRNA expression patterns and their relation to innervation in the human tongue: similarities and differences compared with rodents.
    Nosrat IV, Lindskog S, Seiger A, Nosrat CA.
    J Comp Neurol; 2000 Feb 07; 417(2):133-52. PubMed ID: 10660893
    [Abstract] [Full Text] [Related]

  • 8. Maintenance of Mouse Gustatory Terminal Field Organization Is Dependent on BDNF at Adulthood.
    Sun C, Krimm R, Hill DL.
    J Neurosci; 2018 Aug 01; 38(31):6873-6887. PubMed ID: 29954852
    [Abstract] [Full Text] [Related]

  • 9. Temporal and spatial patterns of tenascin and laminin immunoreactivity suggest roles for extracellular matrix in development of gustatory papillae and taste buds.
    Mistretta CM, Haus LF.
    J Comp Neurol; 1996 Jan 15; 364(3):535-555. PubMed ID: 8820882
    [Abstract] [Full Text] [Related]

  • 10. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.
    Meng L, Ohman-Gault L, Ma L, Krimm RF.
    eNeuro; 2015 Jan 15; 2(6):. PubMed ID: 26730405
    [Abstract] [Full Text] [Related]

  • 11. Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs.
    Mistretta CM, Goosens KA, Farinas I, Reichardt LF.
    J Comp Neurol; 1999 Jun 21; 409(1):13-24. PubMed ID: 10363708
    [Abstract] [Full Text] [Related]

  • 12. Building sensory receptors on the tongue.
    Oakley B, Witt M.
    J Neurocytol; 2004 Dec 21; 33(6):631-46. PubMed ID: 16217619
    [Abstract] [Full Text] [Related]

  • 13. Embryonic geniculate ganglion neurons in culture have neurotrophin-specific electrophysiological properties.
    Al-Hadlaq SM, Bradley RM, MacCallum DK, Mistretta CM.
    Neuroscience; 2003 Dec 21; 118(1):145-59. PubMed ID: 12676146
    [Abstract] [Full Text] [Related]

  • 14. Neurotrophin-4 is more potent than brain-derived neurotrophic factor in promoting, attracting and suppressing geniculate ganglion neurite outgrowth.
    Runge EM, Hoshino N, Biehl MJ, Ton S, Rochlin MW.
    Dev Neurosci; 2012 Dec 21; 34(5):389-401. PubMed ID: 23151843
    [Abstract] [Full Text] [Related]

  • 15. Organ cultures of embryonic rat tongue support tongue and gustatory papilla morphogenesis in vitro without intact sensory ganglia.
    Mbiene JP, Maccallum DK, Mistretta CM.
    J Comp Neurol; 1997 Jan 20; 377(3):324-40. PubMed ID: 8989649
    [Abstract] [Full Text] [Related]

  • 16. The neurotrophin receptor p75 regulates gustatory axon branching and promotes innervation of the tongue during development.
    Fei D, Huang T, Krimm RF.
    Neural Dev; 2014 Jun 24; 9():15. PubMed ID: 24961238
    [Abstract] [Full Text] [Related]

  • 17. Comparison of neurotrophin and repellent sensitivities of early embryonic geniculate and trigeminal axons.
    Rochlin MW, O'Connor R, Giger RJ, Verhaagen J, Farbman AI.
    J Comp Neurol; 2000 Jul 10; 422(4):579-93. PubMed ID: 10861527
    [Abstract] [Full Text] [Related]

  • 18. Differential expression of brain-derived neurotrophic factor and neurotrophin 3 mRNA in lingual papillae and taste buds indicates roles in gustatory and somatosensory innervation.
    Nosrat CA, Ebendal T, Olson L.
    J Comp Neurol; 1996 Dec 23; 376(4):587-602. PubMed ID: 8978472
    [Abstract] [Full Text] [Related]

  • 19. Support of trigeminal sensory neurons by nonneuronal p75 neurotrophin receptors.
    Fan L, Girnius S, Oakley B.
    Brain Res Dev Brain Res; 2004 May 19; 150(1):23-39. PubMed ID: 15126035
    [Abstract] [Full Text] [Related]

  • 20. Exuberant neuronal convergence onto reduced taste bud targets with preservation of neural specificity in mice overexpressing neurotrophin in the tongue epithelium.
    Zaidi FN, Krimm RF, Whitehead MC.
    J Neurosci; 2007 Dec 12; 27(50):13875-81. PubMed ID: 18077699
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.