These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
130 related items for PubMed ID: 27036143
1. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria. Ňancucheo I, Rowe OF, Hedrich S, Johnson DB. FEMS Microbiol Lett; 2016 May; 363(10):. PubMed ID: 27036143 [Abstract] [Full Text] [Related]
2. Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria. Kimura S, Hallberg KB, Johnson DB. Biodegradation; 2006 Mar; 17(2):159-67. PubMed ID: 16456614 [Abstract] [Full Text] [Related]
3. Simultaneous sulfate and zinc removal from acid wastewater using an acidophilic and autotrophic biocathode. Teng W, Liu G, Luo H, Zhang R, Xiang Y. J Hazard Mater; 2016 Mar 05; 304():159-65. PubMed ID: 26561748 [Abstract] [Full Text] [Related]
4. Acidocella aromatica sp. nov.: an acidophilic heterotrophic alphaproteobacterium with unusual phenotypic traits. Jones RM, Hedrich S, Johnson DB. Extremophiles; 2013 Sep 05; 17(5):841-50. PubMed ID: 23884710 [Abstract] [Full Text] [Related]
5. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Hubert C, Voordouw G. Appl Environ Microbiol; 2007 Apr 05; 73(8):2644-52. PubMed ID: 17308184 [Abstract] [Full Text] [Related]
6. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Kushkevych I, Dordević D, Vítězová M. Arch Microbiol; 2019 Apr 05; 201(3):389-397. PubMed ID: 30707247 [Abstract] [Full Text] [Related]
7. Bacterial glycerol oxidation coupled to sulfate reduction at neutral and acidic pH. Santos SC, Liebensteiner MG, van Gelder AH, Dimitrov MR, Almeida PF, Quintella CM, Stams AJM, Sánchez-Andrea I. J Gen Appl Microbiol; 2018 Mar 27; 64(1):1-8. PubMed ID: 29187682 [Abstract] [Full Text] [Related]
12. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Badziong W, Thauer RK, Zeikus JG. Arch Microbiol; 1978 Jan 23; 116(1):41-9. PubMed ID: 623496 [No Abstract] [Full Text] [Related]
13. Inhibition of Sulfate Reduction and Cell Division by Desulfovibrio desulfuricans Coated in Palladium Metal. Barnes RJ, Voegtlin SP, Naik SR, Gomes R, Hubert CRJ, Larter SR, Bryant SL. Appl Environ Microbiol; 2022 Jun 28; 88(12):e0058022. PubMed ID: 35638843 [Abstract] [Full Text] [Related]
14. Desulfovibrio paquesii sp. nov., a hydrogenotrophic sulfate-reducing bacterium isolated from a synthesis-gas-fed bioreactor treating zinc- and sulfate-rich wastewater. van Houten BH, Meulepas RJ, van Doesburg W, Smidt H, Muyzer G, Stams AJ. Int J Syst Evol Microbiol; 2009 Feb 28; 59(Pt 2):229-33. PubMed ID: 19196759 [Abstract] [Full Text] [Related]
15. [Desulfovibrio hontreensis sp. nov., a Sulfate-Reducing Bacterium Isolated from Marine Biofoulings at the South Vietnam Coastal Area]. Tarasov AL, Osipov GA, Borzenkov IA. Mikrobiologiia; 2015 Feb 28; 84(5):570-81. PubMed ID: 27169246 [Abstract] [Full Text] [Related]
16. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. Coupland K, Johnson DB. FEMS Microbiol Lett; 2008 Feb 28; 279(1):30-5. PubMed ID: 18081844 [Abstract] [Full Text] [Related]
17. Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: evaluation for use in a biofuel cell. Cooney MJ, Roschi E, Marison IW, Comninellis C, von Stockar U. Enzyme Microb Technol; 1996 Apr 28; 18(5):358-65. PubMed ID: 8882004 [Abstract] [Full Text] [Related]
19. Lead removal and toxicity reduction from industrial wastewater through biological sulfate reduction process. Teekayuttasakul P, Annachhatre AP. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Oct 28; 43(12):1424-30. PubMed ID: 18780220 [Abstract] [Full Text] [Related]