These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 27037159

  • 41. Label-free graphene oxide-based SPR genosensor for the quantification of microRNA21.
    Mujica ML, Zhang Y, Bédioui F, Gutiérrez F, Rivas G.
    Anal Bioanal Chem; 2020 Jun; 412(15):3539-3546. PubMed ID: 32239259
    [Abstract] [Full Text] [Related]

  • 42. Surface plasmon resonance sensor for lysozyme based on molecularly imprinted thin films.
    Matsunaga T, Hishiya T, Takeuchi T.
    Anal Chim Acta; 2007 May 15; 591(1):63-7. PubMed ID: 17456425
    [Abstract] [Full Text] [Related]

  • 43. High-affinity carboxyl-graphene oxide-based SPR aptasensor for the detection of hCG protein in clinical serum samples.
    Chiu NF, Kuo CT, Chen CY.
    Int J Nanomedicine; 2019 May 15; 14():4833-4847. PubMed ID: 31308661
    [Abstract] [Full Text] [Related]

  • 44. Effect of enzyme modification by well-defined multi-armed poly(ethylene glycol) synthesized using polyamidoamine dendron.
    Harada A, Kato T, Kawamura A, Kojima C, Kono K.
    J Biomater Sci Polym Ed; 2011 May 15; 22(12):1551-61. PubMed ID: 20810022
    [Abstract] [Full Text] [Related]

  • 45. Development of a label-free aptasensor for monitoring the self-association of lysozyme.
    Vasilescu A, Gaspar S, Mihai I, Tache A, Litescu SC.
    Analyst; 2013 Jun 21; 138(12):3530-7. PubMed ID: 23666516
    [Abstract] [Full Text] [Related]

  • 46. Photothermal effects induced by surface plasmon resonance at graphene/gold nanointerfaces: A multiscale modeling study.
    Pang J, Tao L, Lu X, Yang Q, Pachauri V, Wang Z, Ingebrandt S, Chen X.
    Biosens Bioelectron; 2019 Feb 01; 126():470-477. PubMed ID: 30472444
    [Abstract] [Full Text] [Related]

  • 47. The bacteriolytic activity of native and covalently immobilized lysozyme against Gram-positive and Gram-negative bacteria is differentially affected by charged amino acids and glycine.
    Levashov PA, Matolygina DA, Ovchinnikova ED, Adamova IY, Gasanova DA, Smirnov SA, Nelyub VA, Belogurova NG, Tishkov VI, Eremeev NL, Levashov AV.
    FEBS Open Bio; 2019 Mar 01; 9(3):510-518. PubMed ID: 30868059
    [Abstract] [Full Text] [Related]

  • 48. Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing.
    Xue T, Cui X, Guan W, Wang Q, Liu C, Wang H, Qi K, Singh DJ, Zheng W.
    Biosens Bioelectron; 2014 Aug 15; 58():374-9. PubMed ID: 24686149
    [Abstract] [Full Text] [Related]

  • 49. Integrated dual-modality microfluidic sensor for biomarker detection using lithographic plasmonic crystal.
    Ali MA, Tabassum S, Wang Q, Wang Y, Kumar R, Dong L.
    Lab Chip; 2018 Feb 27; 18(5):803-817. PubMed ID: 29431801
    [Abstract] [Full Text] [Related]

  • 50. Label-free detection of 3-nitro-l-tyrosine with nickel-doped graphene localized surface plasmon resonance biosensor.
    Ng SP, Qiu G, Ding N, Lu X, Wu CL.
    Biosens Bioelectron; 2017 Mar 15; 89(Pt 1):468-476. PubMed ID: 27085521
    [Abstract] [Full Text] [Related]

  • 51. Characterization of the action of lysozyme on Staphylococcus aureus and on Micrococcus lysodeikticus.
    KERN RA, KINGKADE MJ, KERN SF, BEHRENS OK.
    J Bacteriol; 1951 Feb 15; 61(2):171-8. PubMed ID: 14824095
    [No Abstract] [Full Text] [Related]

  • 52. Label-free, regenerative and sensitive surface plasmon resonance and electrochemical aptasensors based on graphene.
    Wang L, Zhu C, Han L, Jin L, Zhou M, Dong S.
    Chem Commun (Camb); 2011 Jul 21; 47(27):7794-6. PubMed ID: 21633745
    [Abstract] [Full Text] [Related]

  • 53. Biosensing platform based on graphene oxide via self-assembly induced by synergic interactions.
    Tian J, Yuan PX, Shan D, Ding SN, Zhang GY, Zhang XJ.
    Anal Biochem; 2014 Sep 01; 460():16-21. PubMed ID: 24887416
    [Abstract] [Full Text] [Related]

  • 54. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review.
    Patil PO, Pandey GR, Patil AG, Borse VB, Deshmukh PK, Patil DR, Tade RS, Nangare SN, Khan ZG, Patil AM, More MP, Veerapandian M, Bari SB.
    Biosens Bioelectron; 2019 Aug 15; 139():111324. PubMed ID: 31121435
    [Abstract] [Full Text] [Related]

  • 55. Growth of Micrococcus lysodeikticus as substrate for lysozyme.
    LITWACK G, PRAMER D.
    Proc Soc Exp Biol Med; 1956 Feb 15; 91(2):290-4. PubMed ID: 13297780
    [No Abstract] [Full Text] [Related]

  • 56. An electrochemical aptasensor based on a TiO2/three-dimensional reduced graphene oxide/PPy nanocomposite for the sensitive detection of lysozyme.
    Wang M, Zhai S, Ye Z, He L, Peng D, Feng X, Yang Y, Fang S, Zhang H, Zhang Z.
    Dalton Trans; 2015 Apr 14; 44(14):6473-9. PubMed ID: 25751032
    [Abstract] [Full Text] [Related]

  • 57. Polymerization amplified SPR-DNA assay on noncovalently functionalized graphene.
    Yuan PX, Deng SY, Yao CG, Wan Y, Cosnier S, Shan D.
    Biosens Bioelectron; 2017 Mar 15; 89(Pt 1):319-325. PubMed ID: 27471143
    [Abstract] [Full Text] [Related]

  • 58. Direct determination of urinary lysozyme using surface plasmon resonance light-scattering of gold nanoparticles.
    Wang X, Xu Y, Xu X, Hu K, Xiang M, Li L, Liu F, Li N.
    Talanta; 2010 Jul 15; 82(2):693-7. PubMed ID: 20602956
    [Abstract] [Full Text] [Related]

  • 59. Aptasensor for amplified IgE sensing based on fluorescence quenching by graphene oxide.
    Hu K, Yang H, Zhou J, Zhao S, Tian J.
    Luminescence; 2013 Jul 15; 28(5):662-6. PubMed ID: 22949376
    [Abstract] [Full Text] [Related]

  • 60. Lysozyme interaction with poly(HEMA)-based hydrogel.
    Lord MS, Stenzel MH, Simmons A, Milthorpe BK.
    Biomaterials; 2006 Mar 15; 27(8):1341-5. PubMed ID: 16183113
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.