These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
140 related items for PubMed ID: 27048574
1. iTRAQ-based analysis of developmental dynamics in the soybean leaf proteome reveals pathways associated with leaf photosynthetic rate. Qin J, Zhang J, Liu D, Yin C, Wang F, Chen P, Chen H, Ma J, Zhang B, Xu J, Zhang M. Mol Genet Genomics; 2016 Aug; 291(4):1595-605. PubMed ID: 27048574 [Abstract] [Full Text] [Related]
2. Soybean (Glycine max L. Merr.) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis. Fan Y, Chen J, Wang Z, Tan T, Li S, Li J, Wang B, Zhang J, Cheng Y, Wu X, Yang W, Yang F. BMC Plant Biol; 2019 Jan 21; 19(1):34. PubMed ID: 30665369 [Abstract] [Full Text] [Related]
3. iTRAQ protein profile analysis of developmental dynamics in soybean [Glycine max (L.) Merr.] leaves. Qin J, Zhang J, Wang F, Wang J, Zheng Z, Yin C, Chen H, Shi A, Zhang B, Chen P, Zhang M. PLoS One; 2017 Jan 21; 12(9):e0181910. PubMed ID: 28953898 [Abstract] [Full Text] [Related]
6. Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Ahsan N, Komatsu S. Proteomics; 2009 Nov 21; 9(21):4889-907. PubMed ID: 19862761 [Abstract] [Full Text] [Related]
7. Proteomics analysis reveals a dynamic diurnal pattern of photosynthesis-related pathways in maize leaves. Feng D, Wang Y, Lu T, Zhang Z, Han X. PLoS One; 2017 Nov 21; 12(7):e0180670. PubMed ID: 28732011 [Abstract] [Full Text] [Related]
9. Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max. Gupta R, Lee SJ, Min CW, Kim SW, Park KH, Bae DW, Lee BW, Agrawal GK, Rakwal R, Kim ST. J Proteomics; 2016 Oct 04; 148():65-74. PubMed ID: 27474340 [Abstract] [Full Text] [Related]
10. Protein Cross-Interactions for Efficient Photosynthesis in the Cassava Cultivar SC205 Relative to Its Wild Species. An F, Chen T, Li QX, Qiao J, Zhang Z, Carvalho LJ, Li K, Chen S. J Agric Food Chem; 2019 Aug 14; 67(32):8746-8755. PubMed ID: 31322881 [Abstract] [Full Text] [Related]
11. Proteomic analysis of soybean seedling leaf under waterlogging stress in a time-dependent manner. Kazemi Oskuei B, Yin X, Hashiguchi A, Bandehagh A, Komatsu S. Biochim Biophys Acta Proteins Proteom; 2017 Sep 14; 1865(9):1167-1177. PubMed ID: 28666670 [Abstract] [Full Text] [Related]
12. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars. Tian X, Liu Y, Huang Z, Duan H, Tong J, He X, Gu W, Ma H, Xiao L. Mol Biol Rep; 2015 Mar 14; 42(3):581-601. PubMed ID: 25359310 [Abstract] [Full Text] [Related]
13. [Photosynthetic characteristics and photoprotective mechanisms during leaf development of soybean plants grown in the field]. Jiang CD, Gao HY, Zou Q, Jiang GM. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Aug 14; 30(4):428-34. PubMed ID: 15627692 [Abstract] [Full Text] [Related]
15. [Effects of chitosan on chloroplast protein of vegetable soybean under NaCl stress]. Wang C, Guo Y, Zhang WW. Ying Yong Sheng Tai Xue Bao; 2022 Jan 14; 33(1):111-118. PubMed ID: 35224932 [Abstract] [Full Text] [Related]
19. Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches. Sarkar A, Rakwal R, Bhushan Agrawal S, Shibato J, Ogawa Y, Yoshida Y, Kumar Agrawal G, Agrawal M. J Proteome Res; 2010 Sep 03; 9(9):4565-84. PubMed ID: 20701290 [Abstract] [Full Text] [Related]
20. Mutation of YL Results in a Yellow Leaf with Chloroplast RNA Editing Defect in Soybean. Zhu X, Pan Y, Liu Z, Liu Y, Zhong D, Duan Z, Tian Z, Zhu B, Zhou G. Int J Mol Sci; 2020 Jun 16; 21(12):. PubMed ID: 32560081 [Abstract] [Full Text] [Related] Page: [Next] [New Search]