These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
180 related items for PubMed ID: 27053082
1. Enhanced succinic acid production in Corynebacterium glutamicum with increasing the available NADH supply and glucose consumption rate by decreasing H(+)-ATPase activity. Xu H, Zhou Z, Wang C, Chen Z, Cai H. Biotechnol Lett; 2016 Jul; 38(7):1181-6. PubMed ID: 27053082 [Abstract] [Full Text] [Related]
2. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum. Zhou Z, Wang C, Chen Y, Zhang K, Xu H, Cai H, Chen Z. Biotechnol Prog; 2015 Jul; 31(1):12-9. PubMed ID: 25311136 [Abstract] [Full Text] [Related]
3. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum. Wang C, Zhang H, Cai H, Zhou Z, Chen Y, Chen Y, Ouyang P. Appl Biochem Biotechnol; 2014 Jan; 172(1):340-50. PubMed ID: 24078255 [Abstract] [Full Text] [Related]
4. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H. Appl Microbiol Biotechnol; 2008 Dec; 81(3):459-64. PubMed ID: 18777022 [Abstract] [Full Text] [Related]
5. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Okino S, Inui M, Yukawa H. Appl Microbiol Biotechnol; 2005 Sep; 68(4):475-80. PubMed ID: 15672268 [Abstract] [Full Text] [Related]
6. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum. Wang C, Zhou Z, Cai H, Chen Z, Xu H. J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352 [Abstract] [Full Text] [Related]
7. Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler. Shi X, Chen Y, Ren H, Liu D, Zhao T, Zhao N, Ying H. Bioresour Technol; 2014 Dec; 174():190-7. PubMed ID: 25463799 [Abstract] [Full Text] [Related]
8. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation. Tsuge Y, Uematsu K, Yamamoto S, Suda M, Yukawa H, Inui M. Appl Microbiol Biotechnol; 2015 Jul; 99(13):5573-82. PubMed ID: 25808520 [Abstract] [Full Text] [Related]
9. Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB. Yamauchi Y, Hirasawa T, Nishii M, Furusawa C, Shimizu H. J Gen Appl Microbiol; 2014 Jul; 60(3):112-8. PubMed ID: 25008167 [Abstract] [Full Text] [Related]
10. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H. Appl Environ Microbiol; 2012 Feb; 78(3):865-75. PubMed ID: 22138982 [Abstract] [Full Text] [Related]
11. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. Zhou Z, Wang C, Xu H, Chen Z, Cai H. J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1073-82. PubMed ID: 25952119 [Abstract] [Full Text] [Related]
12. Requirement of de novo synthesis of pyruvate carboxylase in long-term succinic acid production in Corynebacterium glutamicum. Uchikura H, Ninomiya K, Takahashi K, Tsuge Y. Appl Microbiol Biotechnol; 2020 May; 104(10):4313-4320. PubMed ID: 32232530 [Abstract] [Full Text] [Related]
13. Mechanism of increased respiration in an H+-ATPase-defective mutant of Corynebacterium glutamicum. Sawada K, Kato Y, Imai K, Li L, Wada M, Matsushita K, Yokota A. J Biosci Bioeng; 2012 Apr; 113(4):467-73. PubMed ID: 22188772 [Abstract] [Full Text] [Related]
14. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Xu J, Han M, Zhang J, Guo Y, Zhang W. Amino Acids; 2014 Sep; 46(9):2165-75. PubMed ID: 24879631 [Abstract] [Full Text] [Related]
15. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H. Appl Environ Microbiol; 2013 Feb; 79(4):1250-7. PubMed ID: 23241971 [Abstract] [Full Text] [Related]
16. Isobutanol production in Corynebacterium glutamicum: Suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner-Doudoroff pathway. Hasegawa S, Jojima T, Suda M, Inui M. Metab Eng; 2020 May; 59():24-35. PubMed ID: 31926306 [Abstract] [Full Text] [Related]
17. [Metabolic shift of Corynebacterium acetoacidophilum-deltaldh under oxygen deprivation conditions]. Yang Q, Zheng P, Yu F, Liu W, Sun Z. Sheng Wu Gong Cheng Xue Bao; 2014 Mar; 30(3):435-44. PubMed ID: 25007579 [Abstract] [Full Text] [Related]
18. Systems metabolic engineering of Corynebacterium glutamicum to assimilate formic acid for biomass accumulation and succinic acid production. Li K, Zhang X, Li C, Liang YC, Zhao XQ, Liu CG, Sinskey AJ, Bai FW. Bioresour Technol; 2024 Jun; 402():130774. PubMed ID: 38701983 [Abstract] [Full Text] [Related]
19. A comparative proteomic approach to understand the adaptations of an H+ -ATPase-defective mutant of Corynebacterium glutamicum ATCC14067 to energy deficiencies. Li L, Wada M, Yokota A. Proteomics; 2007 Sep; 7(18):3348-57. PubMed ID: 17849411 [Abstract] [Full Text] [Related]
20. Deletion of cg1360 Affects ATP Synthase Function and Enhances Production of L-Valine in Corynebacterium glutamicum. Wang X, Yang H, Zhou W, Liu J, Xu N. J Microbiol Biotechnol; 2019 Aug 28; 29(8):1288-1298. PubMed ID: 31370116 [Abstract] [Full Text] [Related] Page: [Next] [New Search]