These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


111 related items for PubMed ID: 27054522

  • 1. Rhamnolipid Adsorption in Soil: Factors, Unique Features, and Considerations for Use as Green Antizoosporic Agents.
    Soltani Dashtbozorg S, Kohl J, Ju LK.
    J Agric Food Chem; 2016 May 04; 64(17):3330-7. PubMed ID: 27054522
    [Abstract] [Full Text] [Related]

  • 2. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10.
    Christova N, Tuleva B, Cohenb R, Ivanova G, Stoevd G, Stoilova-Disheva M, Stoineva I.
    Z Naturforsch C J Biosci; 2011 May 04; 66(7-8):394-402. PubMed ID: 21950164
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Removing adsorbed heavy metal ions from sand surfaces via applying interfacial properties of rhamnolipid.
    Haryanto B, Chang CH.
    J Oleo Sci; 2015 May 04; 64(2):161-8. PubMed ID: 25748376
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Development and validation of an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the quantitative determination of rhamnolipid congeners.
    Rudden M, Tsauosi K, Marchant R, Banat IM, Smyth TJ.
    Appl Microbiol Biotechnol; 2015 Nov 04; 99(21):9177-87. PubMed ID: 26272088
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Structural characterization of rhamnolipid produced by Pseudomonas aeruginosa strain FIN2 isolated from oil reservoir water.
    Liu JF, Wu G, Yang SZ, Mu BZ.
    World J Microbiol Biotechnol; 2014 May 04; 30(5):1473-84. PubMed ID: 24297330
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Comparative studies on the surface/interface properties and aggregation behavior of mono-rhamnolipid and di-rhamnolipid.
    Wu LM, Lai L, Lu Q, Mei P, Wang YQ, Cheng L, Liu Y.
    Colloids Surf B Biointerfaces; 2019 Sep 01; 181():593-601. PubMed ID: 31202130
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Investigation on the reaction of phenolic pollutions to mono-rhamnolipid micelles using MEUF.
    Liu Z, Yu M, Zeng G, Li M, Zhang J, Zhong H, Liu Y, Shao B, Li Z, Wang Z, Liu G, Yang X.
    Environ Sci Pollut Res Int; 2017 Jan 01; 24(2):1230-1240. PubMed ID: 27770324
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant.
    Aşçi Y, Nurbaş M, Açikel YS.
    J Hazard Mater; 2008 Jun 15; 154(1-3):663-73. PubMed ID: 18068293
    [Abstract] [Full Text] [Related]

  • 19. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.
    Amani H, Müller MM, Syldatk C, Hausmann R.
    Appl Biochem Biotechnol; 2013 Jul 15; 170(5):1080-93. PubMed ID: 23640261
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.