These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
286 related items for PubMed ID: 27055267
1. The physiology and genetics of CO2 concentrating mechanisms in model diatoms. Hopkinson BM, Dupont CL, Matsuda Y. Curr Opin Plant Biol; 2016 Jun; 31():51-7. PubMed ID: 27055267 [Abstract] [Full Text] [Related]
2. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y. Photosynth Res; 2011 Sep; 109(1-3):205-21. PubMed ID: 21365259 [Abstract] [Full Text] [Related]
3. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. Tsuji Y, Nakajima K, Matsuda Y. J Exp Bot; 2017 Jun 01; 68(14):3763-3772. PubMed ID: 28633304 [Abstract] [Full Text] [Related]
4. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms. Clement R, Jensen E, Prioretti L, Maberly SC, Gontero B. J Exp Bot; 2017 Jun 01; 68(14):3925-3935. PubMed ID: 28369472 [Abstract] [Full Text] [Related]
5. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana. Clement R, Dimnet L, Maberly SC, Gontero B. New Phytol; 2016 Mar 01; 209(4):1417-27. PubMed ID: 26529678 [Abstract] [Full Text] [Related]
6. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms. Young JN, Hopkinson BM. J Exp Bot; 2017 Jun 01; 68(14):3751-3762. PubMed ID: 28645158 [Abstract] [Full Text] [Related]
7. A chloroplast pump model for the CO2 concentrating mechanism in the diatom Phaeodactylum tricornutum. Hopkinson BM. Photosynth Res; 2014 Sep 01; 121(2-3):223-33. PubMed ID: 24292858 [Abstract] [Full Text] [Related]
8. Localization and characterization θ carbonic anhydrases in Thalassiosira pseudonana. Nawaly H, Tanaka A, Toyoshima Y, Tsuji Y, Matsuda Y. Photosynth Res; 2023 May 01; 156(2):217-229. PubMed ID: 36862281 [Abstract] [Full Text] [Related]
9. Temperature sensitivity of carbon concentrating mechanisms in the diatom Phaeodactylum tricornutum. Li M, Young JN. Photosynth Res; 2023 May 01; 156(2):205-215. PubMed ID: 36881356 [Abstract] [Full Text] [Related]
10. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: a gateway to carbon metabolism. Matsuda Y, Hopkinson BM, Nakajima K, Dupont CL, Tsuji Y. Philos Trans R Soc Lond B Biol Sci; 2017 Sep 05; 372(1728):. PubMed ID: 28717013 [Abstract] [Full Text] [Related]
11. The diversity of CO2-concentrating mechanisms in marine diatoms as inferred from their genetic content. Shen C, Dupont CL, Hopkinson BM. J Exp Bot; 2017 Jun 01; 68(14):3937-3948. PubMed ID: 28510761 [Abstract] [Full Text] [Related]
12. Responses of carbonic anhydrases and Rubisco to abrupt CO2 changes of seawater in two marine diatoms. Zeng X, Jin P, Zou D, Liu Y, Xia J. Environ Sci Pollut Res Int; 2019 Jun 01; 26(16):16388-16395. PubMed ID: 30982194 [Abstract] [Full Text] [Related]
13. Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana. Samukawa M, Shen C, Hopkinson BM, Matsuda Y. Photosynth Res; 2014 Sep 01; 121(2-3):235-49. PubMed ID: 24414291 [Abstract] [Full Text] [Related]
14. Physiological Responses of a Model Marine Diatom to Fast pH Changes: Special Implications of Coastal Water Acidification. Wu Y, Beardall J, Gao K. PLoS One; 2015 Sep 01; 10(10):e0141163. PubMed ID: 26496125 [Abstract] [Full Text] [Related]
15. The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum. Ewe D, Tachibana M, Kikutani S, Gruber A, Río Bártulos C, Konert G, Kaplan A, Matsuda Y, Kroth PG. Photosynth Res; 2018 Aug 01; 137(2):263-280. PubMed ID: 29572588 [Abstract] [Full Text] [Related]
16. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Kikutani S, Nakajima K, Nagasato C, Tsuji Y, Miyatake A, Matsuda Y. Proc Natl Acad Sci U S A; 2016 Aug 30; 113(35):9828-33. PubMed ID: 27531955 [Abstract] [Full Text] [Related]
17. Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation. Shimakawa G, Demulder M, Flori S, Kawamoto A, Tsuji Y, Nawaly H, Tanaka A, Tohda R, Ota T, Matsui H, Morishima N, Okubo R, Wietrzynski W, Lamm L, Righetto RD, Uwizeye C, Gallet B, Jouneau PH, Gerle C, Kurisu G, Finazzi G, Engel BD, Matsuda Y. Cell; 2024 Oct 17; 187(21):5919-5934.e19. PubMed ID: 39357521 [Abstract] [Full Text] [Related]
18. Characterization of a CO2-Concentrating Mechanism with Low Sodium Dependency in the Centric Diatom Chaetoceros gracilis. Tsuji Y, Kusi-Appiah G, Kozai N, Fukuda Y, Yamano T, Fukuzawa H. Mar Biotechnol (NY); 2021 Jun 17; 23(3):456-462. PubMed ID: 34109463 [Abstract] [Full Text] [Related]
19. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, Maheswari U, Armbrust EV, Bowler C. PLoS One; 2008 Jan 09; 3(1):e1426. PubMed ID: 18183306 [Abstract] [Full Text] [Related]
20. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components. Atkinson N, Feike D, Mackinder LC, Meyer MT, Griffiths H, Jonikas MC, Smith AM, McCormick AJ. Plant Biotechnol J; 2016 May 09; 14(5):1302-15. PubMed ID: 26538195 [Abstract] [Full Text] [Related] Page: [Next] [New Search]