These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
595 related items for PubMed ID: 27056057
1. Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant. Venegas-Calerón M, Sánchez R, Salas JJ, Garcés R, Martínez-Force E. Planta; 2016 Jul; 244(1):245-58. PubMed ID: 27056057 [Abstract] [Full Text] [Related]
2. Characterization of an oleate 12-desaturase from Physaria fendleri and identification of 5'UTR introns in divergent FAD2 family genes. Lozinsky S, Yang H, Forseille L, Cook GR, Ramirez-Erosa I, Smith MA. Plant Physiol Biochem; 2014 Feb; 75():114-22. PubMed ID: 24429134 [Abstract] [Full Text] [Related]
3. Overexpression of Seipin1 Increases Oil in Hydroxy Fatty Acid-Accumulating Seeds. Lunn D, Wallis JG, Browse J. Plant Cell Physiol; 2018 Jan 01; 59(1):205-214. PubMed ID: 29149288 [Abstract] [Full Text] [Related]
4. Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana. Smith MA, Moon H, Chowrira G, Kunst L. Planta; 2003 Jul 01; 217(3):507-16. PubMed ID: 14520576 [Abstract] [Full Text] [Related]
5. Impact of unusual fatty acid synthesis on futile cycling through beta-oxidation and on gene expression in transgenic plants. Moire L, Rezzonico E, Goepfert S, Poirier Y. Plant Physiol; 2004 Jan 01; 134(1):432-42. PubMed ID: 14671017 [Abstract] [Full Text] [Related]
6. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Kim HU, Lee KR, Go YS, Jung JH, Suh MC, Kim JB. Plant Cell Physiol; 2011 Jun 01; 52(6):983-93. PubMed ID: 21659329 [Abstract] [Full Text] [Related]
7. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Broun P, Somerville C. Plant Physiol; 1997 Mar 01; 113(3):933-42. PubMed ID: 9085577 [Abstract] [Full Text] [Related]
8. Crucial enzymes in the hydroxylated triacylglycerol-ricinoleate biosynthesis pathway of castor bean. Chen Y, Liu L, Tian X, Di J, Su Y, Huang F, Chen Y. Curr Protein Pept Sci; 2014 Mar 01; 15(6):572-82. PubMed ID: 25059327 [Abstract] [Full Text] [Related]
9. The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds. Arroyo-Caro JM, Chileh T, Kazachkov M, Zou J, Alonso DL, García-Maroto F. Plant Sci; 2013 Feb 01; 199-200():29-40. PubMed ID: 23265316 [Abstract] [Full Text] [Related]
10. A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri. Broun P, Boddupalli S, Somerville C. Plant J; 1998 Jan 01; 13(2):201-10. PubMed ID: 9680976 [Abstract] [Full Text] [Related]
11. Identification, characterization and field testing of Brassica napus mutants producing high-oleic oils. Bai S, Engelen S, Denolf P, Wallis JG, Lynch K, Bengtsson JD, Van Thournout M, Haesendonckx B, Browse J. Plant J; 2019 Apr 01; 98(1):33-41. PubMed ID: 30536486 [Abstract] [Full Text] [Related]
12. Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J. Plant Biotechnol J; 2008 Oct 01; 6(8):819-31. PubMed ID: 18643899 [Abstract] [Full Text] [Related]
13. Tissue-specific differences in metabolites and transcripts contribute to the heterogeneity of ricinoleic acid accumulation in Ricinus communis L. (castor) seeds. Sturtevant D, Romsdahl TB, Yu XH, Burks DJ, Azad RK, Shanklin J, Chapman KD. Metabolomics; 2019 Jan 03; 15(1):6. PubMed ID: 30830477 [Abstract] [Full Text] [Related]
14. Characterization of a PLDζ2 Homology Gene from Developing Castor Bean Endosperm. Tian B, Sun M, Jayawardana K, Wu D, Chen G. Lipids; 2020 Sep 03; 55(5):537-548. PubMed ID: 32115716 [Abstract] [Full Text] [Related]
15. A small phospholipase A2-α from castor catalyzes the removal of hydroxy fatty acids from phosphatidylcholine in transgenic Arabidopsis seeds. Bayon S, Chen G, Weselake RJ, Browse J. Plant Physiol; 2015 Apr 03; 167(4):1259-70. PubMed ID: 25667315 [Abstract] [Full Text] [Related]
16. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. Bafor M, Smith MA, Jonsson L, Stobart K, Stymne S. Biochem J; 1991 Dec 01; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126 [Abstract] [Full Text] [Related]
17. Characterisation of the FAD2 gene family from Hiptage benghalensis: a ricinoleic acid accumulating plant. Zhou XR, Singh SP, Green AG. Phytochemistry; 2013 Aug 01; 92():42-8. PubMed ID: 23747094 [Abstract] [Full Text] [Related]
18. Production of hydroxy fatty acids in the seeds of Arabidopsis thaliana. Smith M, Moon H, Kunst L. Biochem Soc Trans; 2000 Dec 01; 28(6):947-50. PubMed ID: 11171267 [Abstract] [Full Text] [Related]
19. An analysis of expressed sequence tags of developing castor endosperm using a full-length cDNA library. Lu C, Wallis JG, Browse J. BMC Plant Biol; 2007 Jul 31; 7():42. PubMed ID: 17672910 [Abstract] [Full Text] [Related]
20. Identification of hydroxy fatty acid and triacylglycerol metabolism-related genes in lesquerella through seed transcriptome analysis. Kim HU, Chen GQ. BMC Genomics; 2015 Mar 24; 16(1):230. PubMed ID: 25881190 [Abstract] [Full Text] [Related] Page: [Next] [New Search]