These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1713 related items for PubMed ID: 27075820

  • 1. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.
    López-Serrano C, Torres-Espín A, Hernández J, Alvarez-Palomo AB, Requena J, Gasull X, Edel MJ, Navarro X.
    Cell Transplant; 2016 Oct; 25(10):1833-1852. PubMed ID: 27075820
    [Abstract] [Full Text] [Related]

  • 2. Beneficial Effect of Human Induced Pluripotent Stem Cell-Derived Neural Precursors in Spinal Cord Injury Repair.
    Romanyuk N, Amemori T, Turnovcova K, Prochazka P, Onteniente B, Sykova E, Jendelova P.
    Cell Transplant; 2015 Oct; 24(9):1781-97. PubMed ID: 25259685
    [Abstract] [Full Text] [Related]

  • 3. Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Do Not Promote Functional Recovery of Pharmacologically Immunosuppressed Mice With Contusion Spinal Cord Injury.
    Pomeshchik Y, Puttonen KA, Kidin I, Ruponen M, Lehtonen S, Malm T, Åkesson E, Hovatta O, Koistinaho J.
    Cell Transplant; 2015 Oct; 24(9):1799-812. PubMed ID: 25203632
    [Abstract] [Full Text] [Related]

  • 4. Human-induced pluripotent stem cells generated from intervertebral disc cells improve neurologic functions in spinal cord injury.
    Oh J, Lee KI, Kim HT, You Y, Yoon DH, Song KY, Cheong E, Ha Y, Hwang DY.
    Stem Cell Res Ther; 2015 Jun 24; 6(1):125. PubMed ID: 26104416
    [Abstract] [Full Text] [Related]

  • 5. Neural stem cell mediated recovery is enhanced by Chondroitinase ABC pretreatment in chronic cervical spinal cord injury.
    Suzuki H, Ahuja CS, Salewski RP, Li L, Satkunendrarajah K, Nagoshi N, Shibata S, Fehlings MG.
    PLoS One; 2017 Jun 24; 12(8):e0182339. PubMed ID: 28771534
    [Abstract] [Full Text] [Related]

  • 6. hiPSC-derived NSCs effectively promote the functional recovery of acute spinal cord injury in mice.
    Kong D, Feng B, Amponsah AE, He J, Guo R, Liu B, Du X, Liu X, Zhang S, Lv F, Ma J, Cui H.
    Stem Cell Res Ther; 2021 Mar 11; 12(1):172. PubMed ID: 33706803
    [Abstract] [Full Text] [Related]

  • 7. Mash-1 modified neural stem cells transplantation promotes neural stem cells differentiation into neurons to further improve locomotor functional recovery in spinal cord injury rats.
    Deng M, Xie P, Chen Z, Zhou Y, Liu J, Ming J, Yang J.
    Gene; 2021 May 20; 781():145528. PubMed ID: 33631250
    [Abstract] [Full Text] [Related]

  • 8. [TRANSPLANTATION OF NEURAL STEM CELLS INDUCED BY ALL-TRANS- RETINOIC ACID COMBINED WITH GLIAL CELL LINE DERIVED NEUROTROPHIC FACTOR AND CHONDROITINASE ABC FOR REPAIRING SPINAL CORD INJURY OF RATS].
    Liao Y, Zhong D, Kang M, Yao S, Zhang Y, Yu Y.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug 20; 29(8):1009-15. PubMed ID: 26677625
    [Abstract] [Full Text] [Related]

  • 9. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.
    Kobayashi Y, Okada Y, Itakura G, Iwai H, Nishimura S, Yasuda A, Nori S, Hikishima K, Konomi T, Fujiyoshi K, Tsuji O, Toyama Y, Yamanaka S, Nakamura M, Okano H.
    PLoS One; 2012 Aug 20; 7(12):e52787. PubMed ID: 23300777
    [Abstract] [Full Text] [Related]

  • 10. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU, Cho YE, Yoon DH, Kim KN, Ha Y.
    Acta Neurochir (Wien); 2005 Sep 20; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair.
    Li X, Fan C, Xiao Z, Zhao Y, Zhang H, Sun J, Zhuang Y, Wu X, Shi J, Chen Y, Dai J.
    Biomaterials; 2018 Nov 20; 183():114-127. PubMed ID: 30153562
    [Abstract] [Full Text] [Related]

  • 14. Applications of induced pluripotent stem cell technologies in spinal cord injury.
    Nagoshi N, Okano H.
    J Neurochem; 2017 Jun 20; 141(6):848-860. PubMed ID: 28199003
    [Abstract] [Full Text] [Related]

  • 15. Transplantation of a Peripheral Nerve with Neural Stem Cells Plus Lithium Chloride Injection Promote the Recovery of Rat Spinal Cord Injury.
    Zhang LQ, Zhang WM, Deng L, Xu ZX, Lan WB, Lin JH.
    Cell Transplant; 2018 Mar 20; 27(3):471-484. PubMed ID: 29756516
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Human induced pluripotent stem cell/embryonic stem cell-derived pyramidal neuronal precursors show safety and efficacy in a rat spinal cord injury model.
    Li M, Qi B, Li Q, Zheng T, Wang Y, Liu B, Guan Y, Bai Y, Jian F, Xu ZD, Xu Q, Chen Z.
    Cell Mol Life Sci; 2024 Jul 29; 81(1):318. PubMed ID: 39073571
    [Abstract] [Full Text] [Related]

  • 20. Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats.
    Xu CJ, Xu L, Huang LD, Li Y, Yu PP, Hang Q, Xu XM, Lu PH.
    Neuropathol Appl Neurobiol; 2011 Feb 29; 37(2):135-55. PubMed ID: 20819171
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 86.