These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
337 related items for PubMed ID: 27087196
1. Optimized antireflective silicon nanostructure arrays using nanosphere lithography. Lee D, Bae J, Hong S, Yang H, Kim YB. Nanotechnology; 2016 May 27; 27(21):215302. PubMed ID: 27087196 [Abstract] [Full Text] [Related]
2. Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays. Park H, Shin D, Kang G, Baek S, Kim K, Padilla WJ. Adv Mater; 2011 Dec 22; 23(48):5796-800. PubMed ID: 22116618 [Abstract] [Full Text] [Related]
3. Antireflection Structures for VIS and NIR on Arbitrarily Shaped Fused Silica Substrates with Colloidal Polystyrene Nanosphere Lithography. Schmelz D, Jia G, Käsebier T, Plentz J, Zeitner UD. Micromachines (Basel); 2023 Jun 07; 14(6):. PubMed ID: 37374789 [Abstract] [Full Text] [Related]
4. Bioinspired periodic pinecone-shaped Si subwavelength nanostructures for broadband and omnidirectional antireflective surface. Leem JW, Yu JS. J Nanosci Nanotechnol; 2012 Oct 07; 12(10):7932-8. PubMed ID: 23421159 [Abstract] [Full Text] [Related]
5. Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection. Wang HP, Lai KY, Lin YR, Lin CA, He JH. Langmuir; 2010 Aug 03; 26(15):12855-8. PubMed ID: 20666420 [Abstract] [Full Text] [Related]
6. Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays. Tsai MA, Tseng PC, Chen HC, Kuo HC, Yu P. Opt Express; 2011 Jan 03; 19 Suppl 1():A28-34. PubMed ID: 21263709 [Abstract] [Full Text] [Related]
7. Omnidirectional and Broadband Antireflection Effect with Tapered Silicon Nanostructures Fabricated with Low-Cost and Large-Area Capable Nanosphere Lithography. Kim S, Jeong GS, Park NY, Choi JY. Micromachines (Basel); 2021 Jan 23; 12(2):. PubMed ID: 33498780 [Abstract] [Full Text] [Related]
8. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink. Yeo CI, Song YM, Jang SJ, Lee YT. Opt Express; 2011 Sep 12; 19 Suppl 5():A1109-16. PubMed ID: 21935253 [Abstract] [Full Text] [Related]
9. Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells. Cheon SE, Lee HS, Choi J, Jeong AR, Lee TS, Jeong DS, Lee KS, Lee WS, Kim WM, Lee H, Kim I. Sci Rep; 2017 Aug 04; 7(1):7336. PubMed ID: 28779077 [Abstract] [Full Text] [Related]
10. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning. Ji S, Park J, Lim H. Nanoscale; 2012 Aug 07; 4(15):4603-10. PubMed ID: 22706661 [Abstract] [Full Text] [Related]
11. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection. Ji S, Song K, Nguyen TB, Kim N, Lim H. ACS Appl Mater Interfaces; 2013 Nov 13; 5(21):10731-7. PubMed ID: 24116953 [Abstract] [Full Text] [Related]
12. Large-area, size-tunable Si nanopillar arrays with enhanced antireflective and plasmonic properties. Niu L, Jiang X, Zhao Y, Ma H, Yang J, Cheng K, Du Z. Nanotechnology; 2016 Aug 05; 27(31):315601. PubMed ID: 27345038 [Abstract] [Full Text] [Related]
13. Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching. Gonçalves MR, Makaryan T, Enderle F, Wiedemann S, Plettl A, Marti O, Ziemann P. Beilstein J Nanotechnol; 2011 Aug 05; 2():448-58. PubMed ID: 22003451 [Abstract] [Full Text] [Related]
14. Broadband antireflective silicon nanostructures produced by spin-coated Ag nanoparticles. Kim JB, Yeo CI, Lee YH, Ravindran S, Lee YT. Nanoscale Res Lett; 2014 Feb 01; 9(1):54. PubMed ID: 24484636 [Abstract] [Full Text] [Related]
15. 3D ordered nanostructures fabricated by nanosphere lithography using an organometallic etch mask. Ling XY, Acikgoz C, Phang IY, Hempenius MA, Reinhoudt DN, Vancso GJ, Huskens J. Nanoscale; 2010 Aug 01; 2(8):1455-60. PubMed ID: 20820734 [Abstract] [Full Text] [Related]
16. Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene. Lotito V, Zambelli T. J Colloid Interface Sci; 2015 Jun 01; 447():202-10. PubMed ID: 25432446 [Abstract] [Full Text] [Related]
17. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films. Toma M, Loget G, Corn RM. Nano Lett; 2013 Jun 01; 13(12):6164-9. PubMed ID: 24195672 [Abstract] [Full Text] [Related]
18. Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings. Ko YH, Yu JS. Opt Express; 2011 Jan 03; 19(1):297-305. PubMed ID: 21263569 [Abstract] [Full Text] [Related]
19. Antireflective subwavelength structures on microlens arrays-comparison of various manufacturing techniques. Pacholski C, Morhard C, Spatz JP, Lehr D, Schulze M, Kley EB, Tünnermann A, Helgert M, Sundermann M, Brunner R. Appl Opt; 2012 Jan 01; 51(1):8-14. PubMed ID: 22270407 [Abstract] [Full Text] [Related]
20. Importance of diffuse scattering phenomena in moth-eye arrays for broadband infrared applications. Gonzalez FL, Morse DE, Gordon MJ. Opt Lett; 2014 Jan 01; 39(1):13-6. PubMed ID: 24365809 [Abstract] [Full Text] [Related] Page: [Next] [New Search]