These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
394 related items for PubMed ID: 27093485
21. Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate. Xing XJ, Liu XG, Yue-He, Luo QY, Tang HW, Pang DW. Biosens Bioelectron; 2012; 37(1):61-7. PubMed ID: 22613226 [Abstract] [Full Text] [Related]
22. Detachable nanoladders: A new method for signal identification and their application in the detection of ochratoxin A (OTA). Shao X, Zhu L, Feng Y, Zhang Y, Luo Y, Huang K, Xu W. Anal Chim Acta; 2019 Dec 09; 1087():113-120. PubMed ID: 31585559 [Abstract] [Full Text] [Related]
23. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification. Xiao K, Liu J, Chen H, Zhang S, Kong J. Biosens Bioelectron; 2017 May 15; 91():76-81. PubMed ID: 27992802 [Abstract] [Full Text] [Related]
24. Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. Liu X, Wang F, Aizen R, Yehezkeli O, Willner I. J Am Chem Soc; 2013 Aug 14; 135(32):11832-9. PubMed ID: 23841845 [Abstract] [Full Text] [Related]
25. Aptamer based electrochemical assay for protein kinase activity by coupling hybridization chain reaction. Jia LP, Zhao RN, Wang LJ, Ma RN, Zhang W, Shang L, Wang HS. Biosens Bioelectron; 2018 Oct 15; 117():690-695. PubMed ID: 30014942 [Abstract] [Full Text] [Related]
26. A universal aptasensing platform based on cryonase-assisted signal amplification and graphene oxide induced quenching of the fluorescence of labeled nucleic acid probes: application to the detection of theophylline and ATP. Lou YF, Peng YB, Luo X, Yang Z, Wang R, Sun D, Li L, Tan Y, Huang J, Cui L. Mikrochim Acta; 2019 Jul 02; 186(8):494. PubMed ID: 31267250 [Abstract] [Full Text] [Related]
27. A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification. Liu M, Song J, Shuang S, Dong C, Brennan JD, Li Y. ACS Nano; 2014 Jun 24; 8(6):5564-73. PubMed ID: 24857187 [Abstract] [Full Text] [Related]
29. An aptamer-based fluorometric zearalenone assay using a lighting-up silver nanocluster probe and catalyzed by a hairpin assembly. Yin N, Yuan S, Zhang M, Wang J, Li Y, Peng Y, Bai J, Ning B, Liang J, Gao Z. Mikrochim Acta; 2019 Nov 12; 186(12):765. PubMed ID: 31713694 [Abstract] [Full Text] [Related]
30. Sensitive fluorescent aptasensing of tobramycin on graphene oxide coupling strand displacement amplification and hybridization chain reaction. Li D, Ling S, Meng D, Zhou B, Liang P, Lv B. Int J Biol Macromol; 2022 Nov 01; 220():1287-1293. PubMed ID: 36037911 [Abstract] [Full Text] [Related]
31. A cytometric bead assay for sensitive DNA detection based on enzyme-free signal amplification of hybridization chain reaction. Ren W, Liu H, Yang W, Fan Y, Yang L, Wang Y, Liu C, Li Z. Biosens Bioelectron; 2013 Nov 15; 49():380-6. PubMed ID: 23807231 [Abstract] [Full Text] [Related]
32. A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe. Wang B, Wu Y, Chen Y, Weng B, Xu L, Li C. Biosens Bioelectron; 2016 Jul 15; 81():125-130. PubMed ID: 26938491 [Abstract] [Full Text] [Related]
33. Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification. Wang Y, Gan N, Zhou Y, Li T, Hu F, Cao Y, Chen Y. Biosens Bioelectron; 2017 Nov 15; 97():100-106. PubMed ID: 28578167 [Abstract] [Full Text] [Related]
34. Sensitive detection of intracellular RNA of human telomerase by using graphene oxide as a carrier to deliver the assembly element of hybridization chain reaction. Shi Z, Zhang X, Cheng R, Li B, Jin Y. Analyst; 2016 Apr 25; 141(9):2727-32. PubMed ID: 27029779 [Abstract] [Full Text] [Related]
35. Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques. Yao GH, Liang RP, Yu XD, Huang CF, Zhang L, Qiu JD. Anal Chem; 2015 Jan 20; 87(2):929-36. PubMed ID: 25494977 [Abstract] [Full Text] [Related]
36. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags. Zhou Q, Lin Y, Lin Y, Wei Q, Chen G, Tang D. Talanta; 2016 Jan 20; 146():23-8. PubMed ID: 26695229 [Abstract] [Full Text] [Related]
37. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Li M, Zhou X, Ding W, Guo S, Wu N. Biosens Bioelectron; 2013 Mar 15; 41():889-93. PubMed ID: 23098856 [Abstract] [Full Text] [Related]
38. A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification. Li S, Shang X, Liu J, Wang Y, Guo Y, You J. Anal Biochem; 2017 Jul 01; 528():47-52. PubMed ID: 28442309 [Abstract] [Full Text] [Related]
39. A catalytic and dual recycling amplification ATP sensor based on target-driven allosteric structure switching of aptamer beacons. Peng Y, Li D, Yuan R, Xiang Y. Biosens Bioelectron; 2018 May 15; 105():1-5. PubMed ID: 29331900 [Abstract] [Full Text] [Related]
40. Systematic truncating of aptamers to create high-performance graphene oxide (GO)-based aptasensors for the multiplex detection of mycotoxins. Wang X, Gao X, He J, Hu X, Li Y, Li X, Fan L, Yu HZ. Analyst; 2019 Jun 21; 144(12):3826-3835. PubMed ID: 31090762 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]