These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
210 related items for PubMed ID: 27093908
1. Inferring gene regulatory networks using a time-delayed mass action model. Zhao Y, Jiang M, Chen Y. J Bioinform Comput Biol; 2016 Aug; 14(4):1650012. PubMed ID: 27093908 [Abstract] [Full Text] [Related]
2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data. Yang B, Xu Y, Maxwell A, Koh W, Gong P, Zhang C. BMC Syst Biol; 2018 Dec 14; 12(Suppl 7):115. PubMed ID: 30547796 [Abstract] [Full Text] [Related]
3. Reverse engineering genetic networks using nonlinear saturation kinetics. Kizhakkethil Youseph AS, Chetty M, Karmakar G. Biosystems; 2019 Aug 14; 182():30-41. PubMed ID: 31185246 [Abstract] [Full Text] [Related]
4. Incorporating time-delays in S-System model for reverse engineering genetic networks. Chowdhury AR, Chetty M, Vinh NX. BMC Bioinformatics; 2013 Jun 18; 14():196. PubMed ID: 23777625 [Abstract] [Full Text] [Related]
5. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks. Chen CK. Interdiscip Sci; 2018 Dec 18; 10(4):823-835. PubMed ID: 28748400 [Abstract] [Full Text] [Related]
7. Inferring Gene Regulatory Networks in the Arabidopsis Root Using a Dynamic Bayesian Network Approach. de Luis Balaguer MA, Sozzani R. Methods Mol Biol; 2017 Dec 18; 1629():331-348. PubMed ID: 28623595 [Abstract] [Full Text] [Related]
8. Reverse engineering module networks by PSO-RNN hybrid modeling. Zhang Y, Xuan J, de los Reyes BG, Clarke R, Ressom HW. BMC Genomics; 2009 Jul 07; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874 [Abstract] [Full Text] [Related]
9. Periodic synchronization of isolated network elements facilitates simulating and inferring gene regulatory networks including stochastic molecular kinetics. Hettich J, Gebhardt JCM. BMC Bioinformatics; 2022 Jan 05; 23(1):13. PubMed ID: 34986805 [Abstract] [Full Text] [Related]
14. A sparse and decomposed particle swarm optimization for inferring gene regulatory networks based on fuzzy cognitive maps. Liu L, Liu J. J Bioinform Comput Biol; 2019 Aug 05; 17(4):1950023. PubMed ID: 31617458 [Abstract] [Full Text] [Related]
16. Growing seed genes from time series data and thresholded Boolean networks with perturbation. Higa CH, Andrade TP, Hashimoto RF. IEEE/ACM Trans Comput Biol Bioinform; 2013 Aug 05; 10(1):37-49. PubMed ID: 23702542 [Abstract] [Full Text] [Related]
17. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks. Xiao X, Zhang W, Zou X. PLoS One; 2015 Aug 05; 10(3):e0119294. PubMed ID: 25807392 [Abstract] [Full Text] [Related]
18. Inference of gene networks from gene expression time series using recurrent neural networks and sparse MAP estimation. Chen CK. J Bioinform Comput Biol; 2018 Aug 05; 16(4):1850009. PubMed ID: 30051742 [Abstract] [Full Text] [Related]
19. A hybrid framework for reverse engineering of robust Gene Regulatory Networks. Jafari M, Ghavami B, Sattari V. Artif Intell Med; 2017 Jun 05; 79():15-27. PubMed ID: 28602483 [Abstract] [Full Text] [Related]
20. Inference of Large-scale Time-delayed Gene Regulatory Network with Parallel MapReduce Cloud Platform. Yang B, Bao W, Huang DS, Chen Y. Sci Rep; 2018 Dec 12; 8(1):17787. PubMed ID: 30542062 [Abstract] [Full Text] [Related] Page: [Next] [New Search]