These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 2710114
1. The sarcomeric actin CArG-binding factor is indistinguishable from the c-fos serum response factor. Boxer LM, Prywes R, Roeder RG, Kedes L. Mol Cell Biol; 1989 Feb; 9(2):515-22. PubMed ID: 2710114 [Abstract] [Full Text] [Related]
2. Muscle-specific (CArG) and serum-responsive (SRE) promoter elements are functionally interchangeable in Xenopus embryos and mouse fibroblasts. Taylor M, Treisman R, Garrett N, Mohun T. Development; 1989 May; 106(1):67-78. PubMed ID: 2627887 [Abstract] [Full Text] [Related]
3. A family of muscle gene promoter element (CArG) binding activities in Xenopus embryos: CArG/SRE discrimination and distribution during myogenesis. Taylor MV. Nucleic Acids Res; 1991 May 25; 19(10):2669-75. PubMed ID: 2041743 [Abstract] [Full Text] [Related]
4. Maximal serum stimulation of the c-fos serum response element requires both the serum response factor and a novel binding factor, SRE-binding protein. Boulden AM, Sealy LJ. Mol Cell Biol; 1992 Oct 25; 12(10):4769-83. PubMed ID: 1328862 [Abstract] [Full Text] [Related]
5. Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex. Mack CP, Thompson MM, Lawrenz-Smith S, Owens GK. Circ Res; 2000 Feb 04; 86(2):221-32. PubMed ID: 10666419 [Abstract] [Full Text] [Related]
6. Identification and characterization of a factor that binds to two human sarcomeric actin promoters. Boxer LM, Miwa T, Gustafson TA, Kedes L. J Biol Chem; 1989 Jan 15; 264(2):1284-92. PubMed ID: 2910853 [Abstract] [Full Text] [Related]
7. A competitive mechanism of CArG element regulation by YY1 and SRF: implications for assessment of Phox1/MHox transcription factor interactions at CArG elements. Martin KA, Gualberto A, Kolman MF, Lowry J, Walsh K. DNA Cell Biol; 1997 May 15; 16(5):653-61. PubMed ID: 9174170 [Abstract] [Full Text] [Related]
8. Serum response factor and protein-mediated DNA bending contribute to transcription of the dystrophin muscle-specific promoter. Galvagni F, Lestingi M, Cartocci E, Oliviero S. Mol Cell Biol; 1997 Mar 15; 17(3):1731-43. PubMed ID: 9032300 [Abstract] [Full Text] [Related]
9. Binding of serum response factor to CArG box sequences is necessary but not sufficient to restrict gene expression to arterial smooth muscle cells. Strobeck M, Kim S, Zhang JC, Clendenin C, Du KL, Parmacek MS. J Biol Chem; 2001 May 11; 276(19):16418-24. PubMed ID: 11279108 [Abstract] [Full Text] [Related]
10. Contribution of serum response factor and myocardin to transcriptional regulation of smoothelins. Rensen SS, Niessen PM, Long X, Doevendans PA, Miano JM, van Eys GJ. Cardiovasc Res; 2006 Apr 01; 70(1):136-45. PubMed ID: 16451796 [Abstract] [Full Text] [Related]
11. Natural and synthetic DNA elements with the CArG motif differ in expression and protein-binding properties. Santoro IM, Walsh K. Mol Cell Biol; 1991 Dec 01; 11(12):6296-305. PubMed ID: 1658630 [Abstract] [Full Text] [Related]
12. The transcription factors Elk-1 and serum response factor interact by direct protein-protein contacts mediated by a short region of Elk-1. Shore P, Sharrocks AD. Mol Cell Biol; 1994 May 01; 14(5):3283-91. PubMed ID: 8164681 [Abstract] [Full Text] [Related]
13. Growth hormone regulates ternary complex factors and serum response factor associated with the c-fos serum response element. Liao J, Hodge C, Meyer D, Ho PS, Rosenspire K, Schwartz J. J Biol Chem; 1997 Oct 10; 272(41):25951-8. PubMed ID: 9325329 [Abstract] [Full Text] [Related]
14. Basic helix-loop-helix proteins can act at the E-box within the serum response element of the c-fos promoter to influence hormone-induced promoter activation in Sertoli cells. Chaudhary J, Skinner MK. Mol Endocrinol; 1999 May 10; 13(5):774-86. PubMed ID: 10319327 [Abstract] [Full Text] [Related]
15. Mechanism of binding of serum response factor to serum response element. Huet A, Parlakian A, Arnaud MC, Glandières JM, Valat P, Fermandjian S, Paulin D, Alpert B, Zentz C. FEBS J; 2005 Jun 10; 272(12):3105-19. PubMed ID: 15955069 [Abstract] [Full Text] [Related]
16. Competition between negative acting YY1 versus positive acting serum response factor and tinman homologue Nkx-2.5 regulates cardiac alpha-actin promoter activity. Chen CY, Schwartz RJ. Mol Endocrinol; 1997 Jun 10; 11(6):812-22. PubMed ID: 9171244 [Abstract] [Full Text] [Related]
17. A common factor regulates skeletal and cardiac alpha-actin gene transcription in muscle. Muscat GE, Gustafson TA, Kedes L. Mol Cell Biol; 1988 Oct 10; 8(10):4120-33. PubMed ID: 3185543 [Abstract] [Full Text] [Related]
18. Activation of skeletal alpha-actin gene transcription: the cooperative formation of serum response factor-binding complexes over positive cis-acting promoter serum response elements displaces a negative-acting nuclear factor enriched in replicating myoblasts and nonmyogenic cells. Lee TC, Chow KL, Fang P, Schwartz RJ. Mol Cell Biol; 1991 Oct 10; 11(10):5090-100. PubMed ID: 1922033 [Abstract] [Full Text] [Related]
19. DNA bending in the ternary nucleoprotein complex at the c-fos promoter. Sharrocks AD, Shore P. Nucleic Acids Res; 1995 Jul 11; 23(13):2442-9. PubMed ID: 7630721 [Abstract] [Full Text] [Related]
20. Enhancement of serum-response factor-dependent transcription and DNA binding by the architectural transcription factor HMG-I(Y). Chin MT, Pellacani A, Wang H, Lin SS, Jain MK, Perrella MA, Lee ME. J Biol Chem; 1998 Apr 17; 273(16):9755-60. PubMed ID: 9545312 [Abstract] [Full Text] [Related] Page: [Next] [New Search]