These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


282 related items for PubMed ID: 27118012

  • 1. Microbial community characterization and functional gene quantification in RDX-degrading microcosms derived from sediment and groundwater at two naval sites.
    Wilson FP, Cupples AM.
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7297-309. PubMed ID: 27118012
    [Abstract] [Full Text] [Related]

  • 2. High throughput quantification of the functional genes associated with RDX biodegradation using the SmartChip real-time PCR system.
    Collier JM, Chai B, Cole JR, Michalsen MM, Cupples AM.
    Appl Microbiol Biotechnol; 2019 Sep; 103(17):7161-7175. PubMed ID: 31352507
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation.
    Cho KC, Fuller ME, Hatzinger PB, Chu KH.
    Sci Total Environ; 2016 Nov 01; 569-570():1098-1106. PubMed ID: 27387802
    [Abstract] [Full Text] [Related]

  • 6. Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer.
    Bernstein A, Adar E, Nejidat A, Ronen Z.
    Biodegradation; 2011 Sep 01; 22(5):997-1005. PubMed ID: 21327803
    [Abstract] [Full Text] [Related]

  • 7. Identification of microbial populations assimilating nitrogen from RDX in munitions contaminated military training range soils by high sensitivity stable isotope probing.
    Andeer P, Stahl DA, Lillis L, Strand SE.
    Environ Sci Technol; 2013 Sep 17; 47(18):10356-63. PubMed ID: 23909596
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Application of a multiple lines of evidence approach to document natural attenuation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in groundwater.
    Fuller ME, Koster van Groos PG, Jarrett M, Kucharzyk KH, Minard-Smith A, Heraty LJ, Sturchio NC.
    Chemosphere; 2020 Jul 17; 250():126210. PubMed ID: 32109698
    [Abstract] [Full Text] [Related]

  • 10. Spatially-distinct redox conditions and degradation rates following field-scale bioaugmentation for RDX-contaminated groundwater remediation.
    Michalsen MM, King AS, Istok JD, Crocker FH, Fuller ME, Kucharzyk KH, Gander MJ.
    J Hazard Mater; 2020 Apr 05; 387():121529. PubMed ID: 31911385
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Insight on RDX degradation mechanism by Rhodococcus strains using 13C and 15N kinetic isotope effects.
    Bernstein A, Ronen Z, Gelman F.
    Environ Sci Technol; 2013 Jan 02; 47(1):479-84. PubMed ID: 23215036
    [Abstract] [Full Text] [Related]

  • 13. Biostimulation and microbial community profiling reveal insights on RDX transformation in groundwater.
    Wang D, Boukhalfa H, Marina O, Ware DS, Goering TJ, Sun F, Daligault HE, Lo CC, Vuyisich M, Starkenburg SR.
    Microbiologyopen; 2017 Apr 02; 6(2):. PubMed ID: 27860341
    [Abstract] [Full Text] [Related]

  • 14. Application of (13)C-stable isotope probing to identify RDX-degrading microorganisms in groundwater.
    Cho KC, Lee DG, Roh H, Fuller ME, Hatzinger PB, Chu KH.
    Environ Pollut; 2013 Jul 02; 178():350-60. PubMed ID: 23603473
    [Abstract] [Full Text] [Related]

  • 15. A comparative study of microbial communities in four soil slurries capable of RDX degradation using illumina sequencing.
    Jayamani I, Cupples AM.
    Biodegradation; 2015 Jun 02; 26(3):247-57. PubMed ID: 25913213
    [Abstract] [Full Text] [Related]

  • 16. Investigating differences in the ability of XplA/B-containing bacteria to degrade the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).
    Sabir DK, Grosjean N, Rylott EL, Bruce NC.
    FEMS Microbiol Lett; 2017 Aug 01; 364(14):. PubMed ID: 28854671
    [Abstract] [Full Text] [Related]

  • 17. Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB.
    Fuller ME, McClay K, Hawari J, Paquet L, Malone TE, Fox BG, Steffan RJ.
    Appl Microbiol Biotechnol; 2009 Sep 01; 84(3):535-44. PubMed ID: 19455327
    [Abstract] [Full Text] [Related]

  • 18. Improved RDX detoxification with starch addition using a novel nitrogen-fixing aerobic microbial consortium from soil contaminated with explosives.
    Khan MI, Yang J, Yoo B, Park J.
    J Hazard Mater; 2015 Apr 28; 287():243-51. PubMed ID: 25661171
    [Abstract] [Full Text] [Related]

  • 19. Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing.
    Roh H, Yu CP, Fuller ME, Chu KH.
    Environ Sci Technol; 2009 Apr 01; 43(7):2505-11. PubMed ID: 19452908
    [Abstract] [Full Text] [Related]

  • 20. Field trial demonstrating phytoremediation of the military explosive RDX by XplA/XplB-expressing switchgrass.
    Cary TJ, Rylott EL, Zhang L, Routsong RM, Palazzo AJ, Strand SE, Bruce NC.
    Nat Biotechnol; 2021 Oct 01; 39(10):1216-1219. PubMed ID: 33941930
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.