These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. What determines the Fermi wave vector of composite fermions? Kamburov D, Liu Y, Mueed MA, Shayegan M, Pfeiffer LN, West KW, Baldwin KW. Phys Rev Lett; 2014 Nov 07; 113(19):196801. PubMed ID: 25415915 [Abstract] [Full Text] [Related]
3. Massive and massless Dirac fermions in Pb1-xSnxTe topological crystalline insulator probed by magneto-optical absorption. Assaf BA, Phuphachong T, Volobuev VV, Inhofer A, Bauer G, Springholz G, de Vaulchier LA, Guldner Y. Sci Rep; 2016 Feb 04; 6():20323. PubMed ID: 26843435 [Abstract] [Full Text] [Related]
5. Composite fermions with tunable Fermi contour anisotropy. Kamburov D, Liu Y, Shayegan M, Pfeiffer LN, West KW, Baldwin KW. Phys Rev Lett; 2013 May 17; 110(20):206801. PubMed ID: 25167436 [Abstract] [Full Text] [Related]
6. Luttinger Theorem for the Strongly Correlated Fermi Liquid of Composite Fermions. Balram AC, Tőke C, Jain JK. Phys Rev Lett; 2015 Oct 30; 115(18):186805. PubMed ID: 26565489 [Abstract] [Full Text] [Related]
7. Edge states and integer quantum Hall effect in topological insulator thin films. Zhang SB, Lu HZ, Shen SQ. Sci Rep; 2015 Aug 25; 5():13277. PubMed ID: 26304795 [Abstract] [Full Text] [Related]
8. Magnetoinfrared Spectroscopy of Landau Levels and Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe(5). Chen RY, Chen ZG, Song XY, Schneeloch JA, Gu GD, Wang F, Wang NL. Phys Rev Lett; 2015 Oct 23; 115(17):176404. PubMed ID: 26551130 [Abstract] [Full Text] [Related]
9. Precise Experimental Test of the Luttinger Theorem and Particle-Hole Symmetry for a Strongly Correlated Fermionic System. Hossain MS, Mueed MA, Ma MK, Villegas Rosales KA, Chung YJ, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Phys Rev Lett; 2020 Jul 24; 125(4):046601. PubMed ID: 32794794 [Abstract] [Full Text] [Related]
10. Observation of Dirac node formation and mass acquisition in a topological crystalline insulator. Okada Y, Serbyn M, Lin H, Walkup D, Zhou W, Dhital C, Neupane M, Xu S, Wang YJ, Sankar R, Chou F, Bansil A, Hasan MZ, Wilson SD, Fu L, Madhavan V. Science; 2013 Sep 27; 341(6153):1496-9. PubMed ID: 23989954 [Abstract] [Full Text] [Related]
11. Massless Dirac fermions in graphene under an external periodic magnetic field. Liu S, Nurbawono A, Guo N, Zhang C. J Phys Condens Matter; 2013 Oct 02; 25(39):395302. PubMed ID: 23999085 [Abstract] [Full Text] [Related]
12. Observation of Chiral Fermions with a Large Topological Charge and Associated Fermi-Arc Surface States in CoSi. Takane D, Wang Z, Souma S, Nakayama K, Nakamura T, Oinuma H, Nakata Y, Iwasawa H, Cacho C, Kim T, Horiba K, Kumigashira H, Takahashi T, Ando Y, Sato T. Phys Rev Lett; 2019 Feb 22; 122(7):076402. PubMed ID: 30848650 [Abstract] [Full Text] [Related]
13. Designer Dirac fermions and topological phases in molecular graphene. Gomes KK, Mar W, Ko W, Guinea F, Manoharan HC. Nature; 2012 Mar 14; 483(7389):306-10. PubMed ID: 22422264 [Abstract] [Full Text] [Related]
14. Topological Insulator-Based van der Waals Heterostructures for Effective Control of Massless and Massive Dirac Fermions. Chong SK, Han KB, Nagaoka A, Tsuchikawa R, Liu R, Liu H, Vardeny ZV, Pesin DA, Lee C, Sparks TD, Deshpande VV. Nano Lett; 2018 Dec 12; 18(12):8047-8053. PubMed ID: 30406664 [Abstract] [Full Text] [Related]
17. Massive Dirac fermions in a ferromagnetic kagome metal. Ye L, Kang M, Liu J, von Cube F, Wicker CR, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell DC, Fu L, Comin R, Checkelsky JG. Nature; 2018 Mar 29; 555(7698):638-642. PubMed ID: 29555992 [Abstract] [Full Text] [Related]
18. A topological Dirac insulator in a quantum spin Hall phase. Hsieh D, Qian D, Wray L, Xia Y, Hor YS, Cava RJ, Hasan MZ. Nature; 2008 Apr 24; 452(7190):970-4. PubMed ID: 18432240 [Abstract] [Full Text] [Related]