These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 27125839

  • 1. An ultrasensitive fluorescence method suitable for quantitative analysis of mung bean nuclease and inhibitor screening in vitro and vivo.
    Peng L, Fan J, Tong C, Xie Z, Zhao C, Liu X, Zhu Y, Liu B.
    Biosens Bioelectron; 2016 Sep 15; 83():169-76. PubMed ID: 27125839
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Mung-bean nuclease 1 (EC 3.1.30.1).
    Sharp AJ, Slater RJ.
    Methods Mol Biol; 1993 Sep 15; 16():253-61. PubMed ID: 19082976
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Carbon nanotube-DNA hybrid used for activity monitoring and inhibitor screening of nuclease.
    Liu ZD, Hu PP, Zhao HX, Li YF, Huang CZ.
    Anal Chim Acta; 2011 Nov 07; 706(1):171-5. PubMed ID: 21995925
    [Abstract] [Full Text] [Related]

  • 8. An ultra-high sensitive platform for fluorescence detection of micrococcal nuclease based on graphene oxide.
    He Y, Xiong LH, Xing XJ, Tang HW, Pang DW.
    Biosens Bioelectron; 2013 Apr 15; 42():467-73. PubMed ID: 23238320
    [Abstract] [Full Text] [Related]

  • 9. An end-point method based on graphene oxide for RNase H analysis and inhibitors screening.
    Zhao C, Fan J, Peng L, Zhao L, Tong C, Wang W, Liu B.
    Biosens Bioelectron; 2017 Apr 15; 90():103-109. PubMed ID: 27886596
    [Abstract] [Full Text] [Related]

  • 10. A sensitive graphene oxide-DNA based sensing platform for fluorescence "turn-on" detection of bleomycin.
    Li F, Feng Y, Zhao C, Li P, Tang B.
    Chem Commun (Camb); 2012 Jan 04; 48(1):127-9. PubMed ID: 22051737
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Characterization and developmental expression of single-stranded telomeric DNA-binding proteins from mung bean (Vigna radiata).
    Lee JH, Kim JH, Kim WT, Kang BG, Chung IK.
    Plant Mol Biol; 2000 Mar 04; 42(4):547-57. PubMed ID: 10809001
    [Abstract] [Full Text] [Related]

  • 13. DNA hairpin loops in solution. Correlation between primary structure, thermostability and reactivity with single-strand-specific nuclease from mung bean.
    Xodo LE, Manzini G, Quadrifoglio F, van der Marel G, van Boom J.
    Nucleic Acids Res; 1991 Apr 11; 19(7):1505-11. PubMed ID: 2027758
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Endonucleases.
    Nichols NM.
    Curr Protoc Mol Biol; 2011 Jan 11; Chapter 3():Unit3.12. PubMed ID: 21225639
    [Abstract] [Full Text] [Related]

  • 16. Fluorescent assay for alkaline phosphatase activity based on graphene oxide integrating with λ exonuclease.
    Liu XG, Xing XJ, Li B, Guo YM, Zhang YZ, Yang Y, Zhang LF.
    Biosens Bioelectron; 2016 Jul 15; 81():460-464. PubMed ID: 27015149
    [Abstract] [Full Text] [Related]

  • 17. Mung bean nuclease cleavage pattern at a polypurine.polypyrimidine sequence upstream from the mouse metallothionein-I gene.
    Bacolla A, Wu FY.
    Nucleic Acids Res; 1991 Apr 11; 19(7):1639-47. PubMed ID: 2027772
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Mung bean nuclease treatment increases capture specificity of microdroplet-PCR based targeted DNA enrichment.
    Yu Z, Cao K, Tischler T, Stolle CA, Santani AB.
    PLoS One; 2014 Apr 11; 9(7):e103491. PubMed ID: 25058678
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.