These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


200 related items for PubMed ID: 27126981

  • 1. How Extreme Temperatures Impact Organisms and the Evolution of their Thermal Tolerance.
    Buckley LB, Huey RB.
    Integr Comp Biol; 2016 Jul; 56(1):98-109. PubMed ID: 27126981
    [Abstract] [Full Text] [Related]

  • 2. Biological Impacts of Thermal Extremes: Mechanisms and Costs of Functional Responses Matter.
    Williams CM, Buckley LB, Sheldon KS, Vickers M, Pörtner HO, Dowd WW, Gunderson AR, Marshall KE, Stillman JH.
    Integr Comp Biol; 2016 Jul; 56(1):73-84. PubMed ID: 27252194
    [Abstract] [Full Text] [Related]

  • 3. Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate.
    Kingsolver JG, Buckley LB.
    Philos Trans R Soc Lond B Biol Sci; 2017 Jun 19; 372(1723):. PubMed ID: 28483862
    [Abstract] [Full Text] [Related]

  • 4. Thermal tolerance patterns across latitude and elevation.
    Sunday J, Bennett JM, Calosi P, Clusella-Trullas S, Gravel S, Hargreaves AL, Leiva FP, Verberk WCEP, Olalla-Tárraga MÁ, Morales-Castilla I.
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug 05; 374(1778):20190036. PubMed ID: 31203755
    [Abstract] [Full Text] [Related]

  • 5. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities.
    Buckley LB, Huey RB.
    Glob Chang Biol; 2016 Dec 05; 22(12):3829-3842. PubMed ID: 27062158
    [Abstract] [Full Text] [Related]

  • 6. Extreme Insolation: Climatic Variation Shapes the Evolution of Thermal Tolerance at Multiple Scales.
    Baudier KM, D'Amelio CL, Malhotra R, O'Connor MP, O'Donnell S.
    Am Nat; 2018 Sep 05; 192(3):347-359. PubMed ID: 30125235
    [Abstract] [Full Text] [Related]

  • 7. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients.
    Enriquez-Urzelai U, Tingley R, Kearney MR, Sacco M, Palacio AS, Tejedo M, Nicieza AG.
    J Anim Ecol; 2020 Jul 05; 89(7):1722-1734. PubMed ID: 32221971
    [Abstract] [Full Text] [Related]

  • 8. The evolution of critical thermal limits of life on Earth.
    Bennett JM, Sunday J, Calosi P, Villalobos F, Martínez B, Molina-Venegas R, Araújo MB, Algar AC, Clusella-Trullas S, Hawkins BA, Keith SA, Kühn I, Rahbek C, Rodríguez L, Singer A, Morales-Castilla I, Olalla-Tárraga MÁ.
    Nat Commun; 2021 Feb 19; 12(1):1198. PubMed ID: 33608528
    [Abstract] [Full Text] [Related]

  • 9. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J, Kearney MR, Hoffmann AA.
    Glob Chang Biol; 2014 Jun 19; 20(6):1738-50. PubMed ID: 24549716
    [Abstract] [Full Text] [Related]

  • 10. Global variation in the thermal tolerances of plants.
    Lancaster LT, Humphreys AM.
    Proc Natl Acad Sci U S A; 2020 Jun 16; 117(24):13580-13587. PubMed ID: 32482870
    [Abstract] [Full Text] [Related]

  • 11. Analysis of heat and cold tolerance of a freeze-tolerant soil invertebrate distributed from temperate to Arctic regions: evidence of selection for extreme cold tolerance.
    Holmstrup M, Sørensen JG, Dai W, Krogh PH, Schmelz RM, Slotsbo S.
    J Comp Physiol B; 2022 Jul 16; 192(3-4):435-445. PubMed ID: 35312816
    [Abstract] [Full Text] [Related]

  • 12. The Mortality Response to Absolute and Relative Temperature Extremes.
    Sheridan SC, Lee CC, Allen MJ.
    Int J Environ Res Public Health; 2019 Apr 27; 16(9):. PubMed ID: 31035559
    [Abstract] [Full Text] [Related]

  • 13. Testing the heat-invariant and cold-variability tolerance hypotheses across geographic gradients.
    Bozinovic F, Orellana MJ, Martel SI, Bogdanovich JM.
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec 27; 178():46-50. PubMed ID: 25152532
    [Abstract] [Full Text] [Related]

  • 14. Future temperature extremes threaten land vertebrates.
    Murali G, Iwamura T, Meiri S, Roll U.
    Nature; 2023 Mar 27; 615(7952):461-467. PubMed ID: 36653454
    [Abstract] [Full Text] [Related]

  • 15. Anticipating change: The impact of simulated seasonal heterogeneity on heat tolerances along a latitudinal cline.
    Lush J, Sgrò CM, Hall MD.
    Ecology; 2024 Jul 27; 105(7):e4359. PubMed ID: 38877760
    [Abstract] [Full Text] [Related]

  • 16. Egg incubation temperature does not influence adult heat tolerance in the lizard Anolis sagrei.
    Gunderson AR, Fargevieille A, Warner DA.
    Biol Lett; 2020 Jan 27; 16(1):20190716. PubMed ID: 31937216
    [Abstract] [Full Text] [Related]

  • 17. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology.
    Pörtner HO, Bock C, Mark FC.
    J Exp Biol; 2017 Aug 01; 220(Pt 15):2685-2696. PubMed ID: 28768746
    [Abstract] [Full Text] [Related]

  • 18. Community-wide seasonal shifts in thermal tolerances of mosquitoes.
    Oliveira BF, Yogo WIG, Hahn DA, Yongxing J, Scheffers BR.
    Ecology; 2021 Jul 01; 102(7):e03368. PubMed ID: 33866546
    [Abstract] [Full Text] [Related]

  • 19. An extreme cold event leads to community-wide convergence in lower temperature tolerance in a lizard community.
    Stroud JT, Mothes CC, Beckles W, Heathcote RJP, Donihue CM, Losos JB.
    Biol Lett; 2020 Oct 01; 16(10):20200625. PubMed ID: 33081602
    [Abstract] [Full Text] [Related]

  • 20. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.
    Gunderson AR, Stillman JH.
    Proc Biol Sci; 2015 Jun 07; 282(1808):20150401. PubMed ID: 25994676
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.