These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Markov chain Monte Carlo methods for hierarchical clustering of dynamic causal models. Yao Y, Stephan KE. Hum Brain Mapp; 2021 Jul; 42(10):2973-2989. PubMed ID: 33826194 [Abstract] [Full Text] [Related]
4. Regression DCM for fMRI. Frässle S, Lomakina EI, Razi A, Friston KJ, Buhmann JM, Stephan KE. Neuroimage; 2017 Jul 15; 155():406-421. PubMed ID: 28259780 [Abstract] [Full Text] [Related]
5. A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data. Chen S, Bowman FD, Mayberg HS. Biometrics; 2016 Jun 15; 72(2):596-605. PubMed ID: 26501687 [Abstract] [Full Text] [Related]
13. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation. Tang B, Iyer A, Rao V, Kong N. Comput Methods Programs Biomed; 2019 Oct 15; 179():104976. PubMed ID: 31443856 [Abstract] [Full Text] [Related]
14. Infinite von Mises-Fisher Mixture Modeling of Whole Brain fMRI Data. Røge RE, Madsen KH, Schmidt MN, Mørup M. Neural Comput; 2017 Oct 15; 29(10):2712-2741. PubMed ID: 28777721 [Abstract] [Full Text] [Related]
15. Comparing variational Bayes with Markov chain Monte Carlo for Bayesian computation in neuroimaging. Nathoo FS, Lesperance ML, Lawson AB, Dean CB. Stat Methods Med Res; 2013 Aug 15; 22(4):398-423. PubMed ID: 22642986 [Abstract] [Full Text] [Related]
16. Physiologically informed dynamic causal modeling of fMRI data. Havlicek M, Roebroeck A, Friston K, Gardumi A, Ivanov D, Uludag K. Neuroimage; 2015 Nov 15; 122():355-72. PubMed ID: 26254113 [Abstract] [Full Text] [Related]
17. Fast Bayesian whole-brain fMRI analysis with spatial 3D priors. Sidén P, Eklund A, Bolin D, Villani M. Neuroimage; 2017 Feb 01; 146():211-225. PubMed ID: 27876654 [Abstract] [Full Text] [Related]