These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
599 related items for PubMed ID: 27141854
21. Empirical Markov Chain Monte Carlo Bayesian analysis of fMRI data. de Pasquale F, Del Gratta C, Romani GL. Neuroimage; 2008 Aug 01; 42(1):99-111. PubMed ID: 18538586 [Abstract] [Full Text] [Related]
22. Bayesian modeling of dependence in brain connectivity data. Chen S, Xing Y, Kang J, Kochunov P, Hong LE. Biostatistics; 2020 Apr 01; 21(2):269-286. PubMed ID: 30203093 [Abstract] [Full Text] [Related]
23. Bayesian model reduction and empirical Bayes for group (DCM) studies. Friston KJ, Litvak V, Oswal A, Razi A, Stephan KE, van Wijk BCM, Ziegler G, Zeidman P. Neuroimage; 2016 Mar 01; 128():413-431. PubMed ID: 26569570 [Abstract] [Full Text] [Related]
28. Assessing convergence of Markov chain Monte Carlo simulations in hierarchical Bayesian models for population pharmacokinetics. Dodds MG, Vicini P. Ann Biomed Eng; 2004 Sep 15; 32(9):1300-13. PubMed ID: 15493516 [Abstract] [Full Text] [Related]
29. Multilevel linear modelling for FMRI group analysis using Bayesian inference. Woolrich MW, Behrens TE, Beckmann CF, Jenkinson M, Smith SM. Neuroimage; 2004 Apr 15; 21(4):1732-47. PubMed ID: 15050594 [Abstract] [Full Text] [Related]
32. Learning effective connectivity from fMRI using autoregressive hidden Markov model with missing data. Dang S, Chaudhury S, Lall B, Roy PK. J Neurosci Methods; 2017 Feb 15; 278():87-100. PubMed ID: 28065836 [Abstract] [Full Text] [Related]
33. Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data. Jun SC, George JS, Paré-Blagoev J, Plis SM, Ranken DM, Schmidt DM, Wood CC. Neuroimage; 2005 Oct 15; 28(1):84-98. PubMed ID: 16023866 [Abstract] [Full Text] [Related]
34. A unified Bayesian hierarchical model for MRI tissue classification. Feng D, Liang D, Tierney L. Stat Med; 2014 Apr 15; 33(8):1349-68. PubMed ID: 24738112 [Abstract] [Full Text] [Related]
35. Computational neuroimaging strategies for single patient predictions. Stephan KE, Schlagenhauf F, Huys QJM, Raman S, Aponte EA, Brodersen KH, Rigoux L, Moran RJ, Daunizeau J, Dolan RJ, Friston KJ, Heinz A. Neuroimage; 2017 Jan 15; 145(Pt B):180-199. PubMed ID: 27346545 [Abstract] [Full Text] [Related]
36. Classical and Bayesian inference in neuroimaging: applications. Friston KJ, Glaser DE, Henson RN, Kiebel S, Phillips C, Ashburner J. Neuroimage; 2002 Jun 15; 16(2):484-512. PubMed ID: 12030833 [Abstract] [Full Text] [Related]
37. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies. Bustad A, Terziivanov D, Leary R, Port R, Schumitzky A, Jelliffe R. Clin Pharmacokinet; 2006 Jun 15; 45(4):365-83. PubMed ID: 16584284 [Abstract] [Full Text] [Related]
38. Bayesian fusion and multimodal DCM for EEG and fMRI. Wei H, Jafarian A, Zeidman P, Litvak V, Razi A, Hu D, Friston KJ. Neuroimage; 2020 May 01; 211():116595. PubMed ID: 32027965 [Abstract] [Full Text] [Related]
39. A Bayesian heteroscedastic GLM with application to fMRI data with motion spikes. Eklund A, Lindquist MA, Villani M. Neuroimage; 2017 Jul 15; 155():354-369. PubMed ID: 28473287 [Abstract] [Full Text] [Related]
40. Estimating uncertainty in MRF-based image segmentation: A perfect-MCMC approach. Awate SP, Garg S, Jena R. Med Image Anal; 2019 Jul 15; 55():181-196. PubMed ID: 31085445 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]