These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Molecular docking and molecular dynamics studies reveal structural basis of inhibition and selectivity of inhibitors EGCG and OSU-03012 toward glucose regulated protein-78 (GRP78) overexpressed in glioblastoma. Bhattacharjee R, Devi A, Mishra S. J Mol Model; 2015 Oct; 21(10):272. PubMed ID: 26419972 [Abstract] [Full Text] [Related]
63. Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose. Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, Utsumi S. Biochemistry; 1999 Jun 01; 38(22):7050-61. PubMed ID: 10353816 [Abstract] [Full Text] [Related]
64. Specificity studies of bacillus 1,3-1,4-beta-glucanases and application to glycosynthase-catalyzed transglycosylation. Fairweather JK, Faijes M, Driguez H, Planas A. Chembiochem; 2002 Sep 02; 3(9):866-73. PubMed ID: 12210988 [Abstract] [Full Text] [Related]
65. Automated docking of alpha-(1-->4)- and alpha-(1-->6)-linked glucosyl trisaccharides and maltopentaose into the soybean beta-amylase active site. Rockey WM, Laederach A, Reilly PJ. Proteins; 2000 Aug 01; 40(2):299-309. PubMed ID: 10842343 [Abstract] [Full Text] [Related]
66. Mechanism of action and the substrate-dependent pH maximum shift of the alpha-amylase of Bacillus coagulans. Keating L, Kelly C, Fogarty W. Carbohydr Res; 1998 Jul 01; 309(4):311-8. PubMed ID: 9764468 [Abstract] [Full Text] [Related]
67. Molecular cloning and biochemical characterization of the first archaeal maltogenic amylase from the hyperthermophilic archaeon Thermoplasma volcanium GSS1. Kim JW, Kim YH, Lee HS, Yang SJ, Kim YW, Lee MH, Kim JW, Seo NS, Park CS, Park KH. Biochim Biophys Acta; 2007 May 01; 1774(5):661-9. PubMed ID: 17468058 [Abstract] [Full Text] [Related]
68. The predominantly nonhydrolytic action of alpha amylases on alpha-maltosyl fluoride. Okada G, Genghof DS, Hehre EJ. Carbohydr Res; 1979 Jun 01; 71():287-98. PubMed ID: 313247 [Abstract] [Full Text] [Related]
69. Substrate-binding site of family 11 xylanase from Bacillus firmus K-1 by molecular docking. Jommuengbout P, Pinitglang S, Kyu KL, Ratanakhanokchai K. Biosci Biotechnol Biochem; 2009 Apr 23; 73(4):833-9. PubMed ID: 19352037 [Abstract] [Full Text] [Related]
70. Maltose-forming α-amylase from the hyperthermophilic archaeon Pyrococcus sp. ST04. Jung JH, Seo DH, Holden JF, Park CS. Appl Microbiol Biotechnol; 2014 Mar 23; 98(5):2121-31. PubMed ID: 23884203 [Abstract] [Full Text] [Related]
71. Effect of Leu277 on Disproportionation and Hydrolysis Activity in Bacillus stearothermophilus NO2 Cyclodextrin Glucosyltransferase. Kong D, Wang L, Su L, Wu J. Appl Environ Microbiol; 2021 May 26; 87(12):e0315120. PubMed ID: 33837009 [Abstract] [Full Text] [Related]
73. In silico analysis of bacteriophage tail tubular proteins suggests a putative sugar binding site and a catalytic mechanism. Swietnicki W, Brzozowska E. J Mol Graph Model; 2019 Nov 04; 92():8-16. PubMed ID: 31302501 [Abstract] [Full Text] [Related]
74. Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase. Gaiser OJ, Piotukh K, Ponnuswamy MN, Planas A, Borriss R, Heinemann U. J Mol Biol; 2006 Apr 07; 357(4):1211-25. PubMed ID: 16483609 [Abstract] [Full Text] [Related]
75. Insights into the thermostability and product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Xie X, Ban X, Gu Z, Li C, Hong Y, Cheng L, Li Z. Biotechnol Lett; 2020 Feb 07; 42(2):295-303. PubMed ID: 31792661 [Abstract] [Full Text] [Related]
76. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase alpha-cyclodextrin production. van der Veen BA, Uitdehaag JC, Penninga D, van Alebeek GJ, Smith LM, Dijkstra BW, Dijkhuizen L. J Mol Biol; 2000 Mar 03; 296(4):1027-38. PubMed ID: 10686101 [Abstract] [Full Text] [Related]
77. Hydrolysis of aryl beta-maltotriosides by sweet potato beta-amylase and soybean beta-amylase. Suetsugu N, Takeo K, Sanai Y, Kuge T. J Biochem; 1978 Feb 03; 83(2):473-8. PubMed ID: 147271 [Abstract] [Full Text] [Related]
78. Effect of modifying histidine residues on the action of Bacillus amyloliquefaciens and barley-malt alpha-amylases. Nakatani H, Hamaguchi K, Ishikawa K. Carbohydr Res; 1994 Apr 16; 257(1):155-61. PubMed ID: 8004636 [Abstract] [Full Text] [Related]
79. Molecular dynamics reveals insight into how N226P and H227Y mutations affect maltose binding in the active site of α-glucosidase II from European honeybee, Apis mellifera. Punnatin P, Chanchao C, Chunsrivirot S. PLoS One; 2020 Apr 16; 15(3):e0229734. PubMed ID: 32126122 [Abstract] [Full Text] [Related]
80. Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose. Fujimoto Z, Takase K, Doui N, Momma M, Matsumoto T, Mizuno H. J Mol Biol; 1998 Mar 27; 277(2):393-407. PubMed ID: 9514750 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]