These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


196 related items for PubMed ID: 27157126

  • 41. Functional and anatomical measures for outflow boundary conditions in atherosclerotic coronary bifurcations.
    Schrauwen JTC, Coenen A, Kurata A, Wentzel JJ, van der Steen AFW, Nieman K, Gijsen FJH.
    J Biomech; 2016 Jul 26; 49(11):2127-2134. PubMed ID: 26654676
    [Abstract] [Full Text] [Related]

  • 42. Investigation of the haemodynamic environment of bifurcation plaques within the left coronary artery in realistic patient models based on CT images.
    Chaichana T, Sun Z, Jewkes J.
    Australas Phys Eng Sci Med; 2012 Jun 26; 35(2):231-6. PubMed ID: 22528858
    [Abstract] [Full Text] [Related]

  • 43. Wall shear stress oscillation and its gradient in the normal left coronary artery tree bifurcations.
    Soulis J, Fytanidis D, Seralidou K, Giannoglou G.
    Hippokratia; 2014 Jan 26; 18(1):12-6. PubMed ID: 25125945
    [Abstract] [Full Text] [Related]

  • 44. The evaluation of Murray's law in Psilotum nudum (Psilotaceae), an analogue of ancestral vascular plants.
    McCulloh KA, Sperry JS.
    Am J Bot; 2005 Jun 26; 92(6):985-9. PubMed ID: 21652482
    [Abstract] [Full Text] [Related]

  • 45. Divergence of the normalized wall shear stress as an effective computational template of low-density lipoprotein polarization at the arterial blood-vessel wall interface.
    Mazzi V, De Nisco G, Calò K, Chiastra C, Daemen J, Steinman DA, Wentzel JJ, Morbiducci U, Gallo D.
    Comput Methods Programs Biomed; 2022 Nov 26; 226():107174. PubMed ID: 36223707
    [Abstract] [Full Text] [Related]

  • 46. Carotid geometry effects on blood flow and on risk for vascular disease.
    Nguyen KT, Clark CD, Chancellor TJ, Papavassiliou DV.
    J Biomech; 2008 Nov 26; 41(1):11-9. PubMed ID: 17919645
    [Abstract] [Full Text] [Related]

  • 47. Better Than Nothing: A Rational Approach for Minimizing the Impact of Outflow Strategy on Cerebrovascular Simulations.
    Chnafa C, Brina O, Pereira VM, Steinman DA.
    AJNR Am J Neuroradiol; 2018 Feb 26; 39(2):337-343. PubMed ID: 29269407
    [Abstract] [Full Text] [Related]

  • 48. Impact of plaques in the left coronary artery on wall shear stress and pressure gradient in coronary side branches.
    Chaichana T, Sun Z, Jewkes J.
    Comput Methods Biomech Biomed Engin; 2014 Feb 26; 17(2):108-18. PubMed ID: 22443493
    [Abstract] [Full Text] [Related]

  • 49. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N, Torii R, Wood NB, Hughes AD, Thom SA, Xu XY.
    J Biomech Eng; 2009 Feb 26; 131(2):021003. PubMed ID: 19102562
    [Abstract] [Full Text] [Related]

  • 50. Blood flow rate and wall shear stress in seven major cephalic arteries of humans.
    Seymour RS, Hu Q, Snelling EP.
    J Anat; 2020 Mar 26; 236(3):522-530. PubMed ID: 31710396
    [Abstract] [Full Text] [Related]

  • 51. A novel framework for fluid/structure interaction in rapid subject-specific simulations of blood flow in coronary artery bifurcations.
    Blagojević M, Nikolić A, Zivković M, Zivković M, Stanković G.
    Vojnosanit Pregl; 2014 Mar 26; 71(3):285-92. PubMed ID: 24697016
    [Abstract] [Full Text] [Related]

  • 52. An assessment of intra-patient variability on observed relationships between wall shear stress and plaque progression in coronary arteries.
    Molony DS, Timmins LH, Hung OY, Rasoul-Arzrumly E, Samady H, Giddens DP.
    Biomed Eng Online; 2015 Mar 26; 14 Suppl 1(Suppl 1):S2. PubMed ID: 25603192
    [Abstract] [Full Text] [Related]

  • 53. Flow patterns and wall shear stress distribution in human internal carotid arteries: the geometric effect on the risk for stenoses.
    Zhang C, Xie S, Li S, Pu F, Deng X, Fan Y, Li D.
    J Biomech; 2012 Jan 03; 45(1):83-9. PubMed ID: 22079384
    [Abstract] [Full Text] [Related]

  • 54. Hemodynamic analysis of patient-specific coronary artery tree.
    Zhang JM, Luo T, Tan SY, Lomarda AM, Wong AS, Keng FY, Allen JC, Huo Y, Su B, Zhao X, Wan M, Kassab GS, Tan RS, Zhong L.
    Int J Numer Method Biomed Eng; 2015 Apr 03; 31(4):e02708. PubMed ID: 25630671
    [Abstract] [Full Text] [Related]

  • 55. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI.
    Harloff A, Nussbaumer A, Bauer S, Stalder AF, Frydrychowicz A, Weiller C, Hennig J, Markl M.
    Magn Reson Med; 2010 Jun 03; 63(6):1529-36. PubMed ID: 20512856
    [Abstract] [Full Text] [Related]

  • 56. Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments.
    Chaniotis AK, Kaiktsis L, Katritsis D, Efstathopoulos E, Pantos I, Marmarellis V.
    Phys Med; 2010 Jun 03; 26(3):140-56. PubMed ID: 20400349
    [Abstract] [Full Text] [Related]

  • 57. Low-Density Lipoprotein concentration in the normal Left Coronary Artery tree.
    Soulis JV, Giannoglou GD, Papaioannou V, Parcharidis GE, Louridas GE.
    Biomed Eng Online; 2008 Oct 17; 7():26. PubMed ID: 18925974
    [Abstract] [Full Text] [Related]

  • 58. Systematic review and meta-analysis of Murray's law in the coronary arterial circulation.
    Taylor DJ, Saxton H, Halliday I, Newman T, Hose DR, Kassab GS, Gunn JP, Morris PD.
    Am J Physiol Heart Circ Physiol; 2024 Jul 01; 327(1):H182-H190. PubMed ID: 38787386
    [Abstract] [Full Text] [Related]

  • 59. On connecting large vessels to small. The meaning of Murray's law.
    Sherman TF.
    J Gen Physiol; 1981 Oct 01; 78(4):431-53. PubMed ID: 7288393
    [Abstract] [Full Text] [Related]

  • 60. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.
    Freshwater IJ, Morsi YS, Lai T.
    Proc Inst Mech Eng H; 2006 Oct 01; 220(7):743-57. PubMed ID: 17117764
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.