These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


373 related items for PubMed ID: 27157723

  • 1. Fabrication of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites with reinforcement by hydroxyapatite using extrusion processing.
    Öner M, İlhan B.
    Mater Sci Eng C Mater Biol Appl; 2016 Aug 01; 65():19-26. PubMed ID: 27157723
    [Abstract] [Full Text] [Related]

  • 2. The Effect of Boron Nitride on the Thermal and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
    Öner M, Kızıl G, Keskin G, Pochat-Bohatier C, Bechelany M.
    Nanomaterials (Basel); 2018 Nov 15; 8(11):. PubMed ID: 30445720
    [Abstract] [Full Text] [Related]

  • 3. Morphology, thermal and mechanical properties of poly (ε-caprolactone) biocomposites reinforced with nano-hydroxyapatite decorated graphene.
    Zhou K, Gao R, Jiang S.
    J Colloid Interface Sci; 2017 Jun 15; 496():334-342. PubMed ID: 28237751
    [Abstract] [Full Text] [Related]

  • 4. Oxygen Barrier and Thermomechanical Properties of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Biocomposites Reinforced with Calcium Carbonate Particles.
    Kirboga S, Öner M.
    Acta Chim Slov; 2020 Mar 15; 67(1):137-150. PubMed ID: 33558918
    [Abstract] [Full Text] [Related]

  • 5. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S, Prabhakaran MP, Qin X, Ramakrishna S.
    J Biomater Appl; 2015 May 15; 29(10):1394-406. PubMed ID: 25592285
    [Abstract] [Full Text] [Related]

  • 6. Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic.
    Bhardwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M.
    Biomacromolecules; 2006 Jun 15; 7(6):2044-51. PubMed ID: 16768432
    [Abstract] [Full Text] [Related]

  • 7. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering.
    Paşcu EI, Stokes J, McGuinness GB.
    Mater Sci Eng C Mater Biol Appl; 2013 Dec 01; 33(8):4905-16. PubMed ID: 24094204
    [Abstract] [Full Text] [Related]

  • 8. Influence of Hydroxyapatite Surface Functionalization on Thermal and Biological Properties of Poly(l-Lactide)- and Poly(l-Lactide-co-Glycolide)-Based Composites.
    Gazińska M, Krokos A, Kobielarz M, Włodarczyk M, Skibińska P, Stępak B, Antończak A, Morawiak M, Płociński P, Rudnicka K.
    Int J Mol Sci; 2020 Sep 13; 21(18):. PubMed ID: 32933206
    [Abstract] [Full Text] [Related]

  • 9. SEM and TEM for structure and properties characterization of bacterial cellulose/hydroxyapatite composites.
    Arkharova NA, Suvorova EI, Severin AV, Khripunov AK, Krasheninnikov SV, Klechkovskaya VV.
    Scanning; 2016 Nov 13; 38(6):757-765. PubMed ID: 27171920
    [Abstract] [Full Text] [Related]

  • 10. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D, Gallego Ferrer G, Ivankovic M, Ivankovic H.
    Mater Sci Eng C Mater Biol Appl; 2014 Jan 01; 34():437-45. PubMed ID: 24268280
    [Abstract] [Full Text] [Related]

  • 11. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K, Huang J, Gao H, Zhong Y, Cao X, Chen Y, Zhang L, Cai J.
    Biomacromolecules; 2016 Apr 11; 17(4):1506-15. PubMed ID: 26955741
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Understanding the roles of nanoparticle dispersion and polymer crystallinity in controlling the mechanical properties of HA/PHBV nanocomposites.
    Noohom W, Jack KS, Martin D, Trau M.
    Biomed Mater; 2009 Feb 11; 4(1):015003. PubMed ID: 18981546
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Electrospun PHBV/PEO co-solution blends: microstructure, thermal and mechanical properties.
    Bianco A, Calderone M, Cacciotti I.
    Mater Sci Eng C Mater Biol Appl; 2013 Apr 01; 33(3):1067-77. PubMed ID: 23827544
    [Abstract] [Full Text] [Related]

  • 20. Effect of surfactant types on the biocompatibility of electrospun HAp/PHBV composite nanofibers.
    Suslu A, Albayrak AZ, Urkmez AS, Bayir E, Cocen U.
    J Mater Sci Mater Med; 2014 Dec 01; 25(12):2677-89. PubMed ID: 25091188
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.