These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


84 related items for PubMed ID: 2716849

  • 21. Chiasmatic course of temporal retinal axons in the developing ferret.
    Baker GE, Reese BE.
    J Comp Neurol; 1993 Apr 01; 330(1):95-104. PubMed ID: 8468406
    [Abstract] [Full Text] [Related]

  • 22. Axonal pathfinding during the regeneration of the goldfish optic pathway.
    Bernhardt R.
    J Comp Neurol; 1989 Jun 01; 284(1):119-34. PubMed ID: 2754027
    [Abstract] [Full Text] [Related]

  • 23. Abnormal pigmentation and unusual morphogenesis of the optic stalk may be correlated with retinal axon misguidance in embryonic Siamese cats.
    Webster MJ, Shatz CJ, Kliot M, Silver J.
    J Comp Neurol; 1988 Mar 22; 269(4):592-611. PubMed ID: 3372729
    [Abstract] [Full Text] [Related]

  • 24. Chemotropic guidance of developing axons in the mammalian central nervous system.
    Tessier-Lavigne M, Placzek M, Lumsden AG, Dodd J, Jessell TM.
    Nature; 1988 Mar 22; 336(6201):775-8. PubMed ID: 3205306
    [Abstract] [Full Text] [Related]

  • 25. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth.
    Perez RG, Halfter W.
    Dev Biol; 1993 Mar 22; 156(1):278-92. PubMed ID: 7680630
    [Abstract] [Full Text] [Related]

  • 26. Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina.
    Matsumoto DE, Scalia F.
    J Comp Neurol; 1981 Oct 10; 202(1):135-55. PubMed ID: 6974743
    [Abstract] [Full Text] [Related]

  • 27. Tenascin protein and mRNA in the avian visual system: distribution and potential contribution to retinotectal development.
    Perez RG, Halfter W.
    Perspect Dev Neurobiol; 1994 Oct 10; 2(1):75-87. PubMed ID: 7530146
    [Abstract] [Full Text] [Related]

  • 28. Specification of retinotectal connexions during development of the toad Xenopus laevis.
    Sharma SC, Hollyfield JG.
    J Embryol Exp Morphol; 1980 Feb 10; 55():77-92. PubMed ID: 7373205
    [Abstract] [Full Text] [Related]

  • 29. Fate of uncrossed retinal projections following early or late prenatal monocular enucleation in the mouse.
    Godement P, Salaün J, Métin C.
    J Comp Neurol; 1987 Jan 01; 255(1):97-109. PubMed ID: 3819012
    [Abstract] [Full Text] [Related]

  • 30. Expression of multiple class three semaphorins in the retina and along the path of zebrafish retinal axons.
    Callander DC, Lamont RE, Childs SJ, McFarlane S.
    Dev Dyn; 2007 Oct 01; 236(10):2918-24. PubMed ID: 17879313
    [Abstract] [Full Text] [Related]

  • 31. Role of the target in directing the outgrowth of retinal axons: transplants reveal surface-related and surface-independent cues.
    Hankin MH, Lund RD.
    J Comp Neurol; 1987 Sep 15; 263(3):455-66. PubMed ID: 2822776
    [Abstract] [Full Text] [Related]

  • 32. The early development of the optic nerve and chiasm in embryonic rat.
    Horsburgh GM, Sefton AJ.
    J Comp Neurol; 1986 Jan 22; 243(4):547-60. PubMed ID: 3950086
    [Abstract] [Full Text] [Related]

  • 33. Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration.
    Zhao Y, Szaro BG.
    J Neurobiol; 1997 Nov 20; 33(6):811-24. PubMed ID: 9369153
    [Abstract] [Full Text] [Related]

  • 34. Initial tract formation in the vertebrate brain.
    Easter SS, Burrill J, Marcus RC, Ross LS, Taylor JS, Wilson SW.
    Prog Brain Res; 1994 Nov 20; 102():79-93. PubMed ID: 7800834
    [No Abstract] [Full Text] [Related]

  • 35. Aberrant optic axons in the retinal pigment epithelium during chick and quail visual pathway development.
    Halfter W.
    J Comp Neurol; 1988 Feb 08; 268(2):161-70. PubMed ID: 3360983
    [Abstract] [Full Text] [Related]

  • 36. Perturbation of the developing Xenopus retinotectal projection following injections of antibodies against beta1 integrin receptors and N-cadherin.
    Stone KE, Sakaguchi DS.
    Dev Biol; 1996 Nov 25; 180(1):297-310. PubMed ID: 8948592
    [Abstract] [Full Text] [Related]

  • 37. The early development of the frog retinotectal projection.
    Taylor JS.
    Dev Suppl; 1991 Nov 25; Suppl 2():95-104. PubMed ID: 1842361
    [Abstract] [Full Text] [Related]

  • 38. Expression of a novel N-CAM glycoform (NOC-1) on axon tracts in embryonic Xenopus brain.
    Anderson RB, Key B.
    Dev Dyn; 1996 Nov 25; 207(3):263-9. PubMed ID: 8922525
    [Abstract] [Full Text] [Related]

  • 39. Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system.
    Braisted JE, McLaughlin T, Wang HU, Friedman GC, Anderson DJ, O'leary DD.
    Dev Biol; 1997 Nov 01; 191(1):14-28. PubMed ID: 9356168
    [Abstract] [Full Text] [Related]

  • 40. Trajectories of regenerating retinal axons in the goldfish tectum: II. Exploratory branches and growth cones on axons at early regeneration stages.
    Stuermer CA.
    J Comp Neurol; 1988 Jan 01; 267(1):69-91. PubMed ID: 3343393
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 5.