These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


247 related items for PubMed ID: 27171920

  • 21. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N, Ul-Islam M, Khattak WA, Park JK.
    Carbohydr Polym; 2013 Nov 06; 98(2):1585-98. PubMed ID: 24053844
    [Abstract] [Full Text] [Related]

  • 22. Fabrication of porous chitosan/hydroxyapatite nanocomposites: their mechanical and biological properties.
    Kashiwazaki H, Kishiya Y, Matsuda A, Yamaguchi K, Iizuka T, Tanaka J, Inoue N.
    Biomed Mater Eng; 2009 Nov 06; 19(2-3):133-40. PubMed ID: 19581706
    [Abstract] [Full Text] [Related]

  • 23. Bacterial cellulose composites loaded with SiO2 nanoparticles: Dynamic-mechanical and thermal properties.
    Sheykhnazari S, Tabarsa T, Ashori A, Ghanbari A.
    Int J Biol Macromol; 2016 Dec 06; 93(Pt A):672-677. PubMed ID: 27637448
    [Abstract] [Full Text] [Related]

  • 24. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering.
    Paşcu EI, Stokes J, McGuinness GB.
    Mater Sci Eng C Mater Biol Appl; 2013 Dec 01; 33(8):4905-16. PubMed ID: 24094204
    [Abstract] [Full Text] [Related]

  • 25. Synthesis and characterization of biomimetic hydroxyapatite/sepiolite nanocomposites.
    Wan C, Chen B.
    Nanoscale; 2011 Feb 01; 3(2):693-700. PubMed ID: 21103489
    [Abstract] [Full Text] [Related]

  • 26. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials.
    Yunoki S, Sugiura H, Ikoma T, Kondo E, Yasuda K, Tanaka J.
    Biomed Mater; 2011 Feb 01; 6(1):015012. PubMed ID: 21242631
    [Abstract] [Full Text] [Related]

  • 27. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M, Xu WZ, Wang Z, Sham TK, Charpentier PA.
    ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):16918-31. PubMed ID: 25184699
    [Abstract] [Full Text] [Related]

  • 28. Hybrid and biocompatible cellulose/polyurethane nanocomposites with water-activated shape memory properties.
    Urbina L, Alonso-Varona A, Saralegi A, Palomares T, Eceiza A, Corcuera MÁ, Retegi A.
    Carbohydr Polym; 2019 Jul 15; 216():86-96. PubMed ID: 31047085
    [Abstract] [Full Text] [Related]

  • 29. Development of regenerated cellulose/halloysites nanocomposites via ionic liquids.
    Hanid NA, Wahit MU, Guo Q, Mahmoodian S, Soheilmoghaddam M.
    Carbohydr Polym; 2014 Jan 15; 99():91-7. PubMed ID: 24274483
    [Abstract] [Full Text] [Related]

  • 30. Evolution of morphology of bacterial cellulose scaffolds during early culture.
    Luo H, Zhang J, Xiong G, Wan Y.
    Carbohydr Polym; 2014 Oct 13; 111():722-8. PubMed ID: 25037408
    [Abstract] [Full Text] [Related]

  • 31. Sonochemical synthesis of cellulose/hydroxyapatite nanocomposites and their application in protein adsorption.
    Fu LH, Qi C, Liu YJ, Cao WT, Ma MG.
    Sci Rep; 2018 May 29; 8(1):8292. PubMed ID: 29844448
    [Abstract] [Full Text] [Related]

  • 32. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique.
    Poursamar SA, Azami M, Mozafari M.
    Colloids Surf B Biointerfaces; 2011 Jun 01; 84(2):310-6. PubMed ID: 21310596
    [Abstract] [Full Text] [Related]

  • 33. Processing and mechanical properties of HA/UHMWPE nanocomposites.
    Fang L, Leng Y, Gao P.
    Biomaterials; 2006 Jul 01; 27(20):3701-7. PubMed ID: 16564570
    [Abstract] [Full Text] [Related]

  • 34. Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites.
    Liu H, Liu D, Yao F, Wu Q.
    Bioresour Technol; 2010 Jul 01; 101(14):5685-92. PubMed ID: 20206507
    [Abstract] [Full Text] [Related]

  • 35. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K, Huang J, Gao H, Zhong Y, Cao X, Chen Y, Zhang L, Cai J.
    Biomacromolecules; 2016 Apr 11; 17(4):1506-15. PubMed ID: 26955741
    [Abstract] [Full Text] [Related]

  • 36. Compression properties of polyvinyl alcohol--bacterial cellulose nanocomposite.
    Millon LE, Oates CJ, Wan W.
    J Biomed Mater Res B Appl Biomater; 2009 Aug 11; 90(2):922-9. PubMed ID: 19360889
    [Abstract] [Full Text] [Related]

  • 37. Ultrasound-assisted synthesis of mesoporous zirconia-hydroxyapatite nanocomposites and their dual surface affinity for Cr3+/Cr2O7(2-) ions.
    Achelhi K, Masse S, Laurent G, Roux C, Laghzizil A, Saoiabi A, Coradin T.
    Langmuir; 2011 Dec 20; 27(24):15176-84. PubMed ID: 22053732
    [Abstract] [Full Text] [Related]

  • 38. Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals.
    Niamsap T, Lam NT, Sukyai P.
    Carbohydr Polym; 2019 Feb 01; 205():159-166. PubMed ID: 30446091
    [Abstract] [Full Text] [Related]

  • 39. Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers.
    Trovatti E, Carvalho AJ, Ribeiro SJ, Gandini A.
    Biomacromolecules; 2013 Aug 12; 14(8):2667-74. PubMed ID: 23782026
    [Abstract] [Full Text] [Related]

  • 40. Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering.
    Ran J, Jiang P, Liu S, Sun G, Yan P, Shen X, Tong H.
    Mater Sci Eng C Mater Biol Appl; 2017 Sep 01; 78():130-140. PubMed ID: 28575967
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.