These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 27173973

  • 1. Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: Effects of interaural time and level differences.
    Laumen G, Tollin DJ, Beutelmann R, Klump GM.
    Hear Res; 2016 Jul; 337():46-58. PubMed ID: 27173973
    [Abstract] [Full Text] [Related]

  • 2. Normative Study of the Binaural Interaction Component of the Human Auditory Brainstem Response as a Function of Interaural Time Differences.
    Sammeth CA, Greene NT, Brown AD, Tollin DJ.
    Ear Hear; 2021 Jul; 42(3):629-643. PubMed ID: 33141776
    [Abstract] [Full Text] [Related]

  • 3. Interaural frequency mismatch jointly modulates neural brainstem binaural interaction and behavioral interaural time difference sensitivity in humans.
    Sammeth CA, Brown AD, Greene NT, Tollin DJ.
    Hear Res; 2023 Sep 15; 437():108839. PubMed ID: 37429100
    [Abstract] [Full Text] [Related]

  • 4. Evidence for the origin of the binaural interaction component of the auditory brainstem response.
    Tolnai S, Klump GM.
    Eur J Neurosci; 2020 Jan 15; 51(2):598-610. PubMed ID: 31494984
    [Abstract] [Full Text] [Related]

  • 5. Investigating the optimal stimulus to evoke the binaural interaction component of the auditory brainstem response.
    Owrutsky ZL, Peacock J, Tollin DJ.
    Hear Res; 2023 Dec 15; 440():108896. PubMed ID: 37924633
    [Abstract] [Full Text] [Related]

  • 6. Binaural interaction in the auditory brainstem response: a normative study.
    Van Yper LN, Vermeire K, De Vel EF, Battmer RD, Dhooge IJ.
    Clin Neurophysiol; 2015 Apr 15; 126(4):772-9. PubMed ID: 25240247
    [Abstract] [Full Text] [Related]

  • 7. A Comparison of Two Objective Measures of Binaural Processing: The Interaural Phase Modulation Following Response and the Binaural Interaction Component.
    Haywood NR, Undurraga JA, Marquardt T, McAlpine D.
    Trends Hear; 2015 Dec 30; 19():. PubMed ID: 26721925
    [Abstract] [Full Text] [Related]

  • 8. The Physiological Basis and Clinical Use of the Binaural Interaction Component of the Auditory Brainstem Response.
    Laumen G, Ferber AT, Klump GM, Tollin DJ.
    Ear Hear; 2016 Dec 30; 37(5):e276-e290. PubMed ID: 27232077
    [Abstract] [Full Text] [Related]

  • 9. Test-Retest Reliability of the Binaural Interaction Component of the Auditory Brainstem Response.
    Ferber AT, Benichoux V, Tollin DJ.
    Ear Hear; 2016 Dec 30; 37(5):e291-301. PubMed ID: 27232069
    [Abstract] [Full Text] [Related]

  • 10. The influence of externalization and spatial cues on the generation of auditory brainstem responses and middle latency responses.
    Junius D, Riedel H, Kollmeier B.
    Hear Res; 2007 Mar 30; 225(1-2):91-104. PubMed ID: 17270375
    [Abstract] [Full Text] [Related]

  • 11. Binaural interaction in human auditory brainstem and middle-latency responses affected by sound frequency band, lateralization predictability, and attended modality.
    Ikeda K, Campbell TA.
    Hear Res; 2024 Oct 30; 452():109089. PubMed ID: 39137721
    [Abstract] [Full Text] [Related]

  • 12. Reinterpreting the human ABR binaural interaction component: isolating attention from stimulus effects.
    Ikeda K, Campbell TA.
    Hear Res; 2021 Oct 30; 410():108350. PubMed ID: 34534892
    [Abstract] [Full Text] [Related]

  • 13. Between-ear sound frequency disparity modulates a brain stem biomarker of binaural hearing.
    Brown AD, Anbuhl KL, Gilmer JI, Tollin DJ.
    J Neurophysiol; 2019 Sep 01; 122(3):1110-1122. PubMed ID: 31314646
    [Abstract] [Full Text] [Related]

  • 14. Binaural interaction in human auditory brainstem response compared for tone-pips and rectangular clicks under conditions of auditory and visual attention.
    Ikeda K.
    Hear Res; 2015 Jul 01; 325():27-34. PubMed ID: 25776741
    [Abstract] [Full Text] [Related]

  • 15. Effects of interaural time and level differences on the binaural interaction component of the 80 Hz auditory steady-state response.
    Zhang F, Boettcher FA.
    J Am Acad Audiol; 2008 Jan 01; 19(1):82-94. PubMed ID: 18637411
    [Abstract] [Full Text] [Related]

  • 16. Interaural delay-dependent changes in the binaural difference potential of the human auditory brain stem response.
    Riedel H, Kollmeier B.
    Hear Res; 2006 Aug 01; 218(1-2):5-19. PubMed ID: 16762518
    [Abstract] [Full Text] [Related]

  • 17. Origin of the binaural interaction component in wave P4 of the short-latency auditory evoked potentials in the cat: evaluation of serial depth recordings from the brainstem.
    Ungan P, Yagcioglu S.
    Hear Res; 2002 May 01; 167(1-2):81-101. PubMed ID: 12117533
    [Abstract] [Full Text] [Related]

  • 18. The Binaural Interaction Component in Barn Owl (Tyto alba) Presents few Differences to Mammalian Data.
    Palanca-Castan N, Laumen G, Reed D, Köppl C.
    J Assoc Res Otolaryngol; 2016 Dec 01; 17(6):577-589. PubMed ID: 27562803
    [Abstract] [Full Text] [Related]

  • 19. The effect of interaural timing on the posterior auricular muscle reflex in normal adult volunteers.
    Doubell TP, Alsetrawi A, Bastawrous DAS, Bastawrous MAS, Daibes A, Jadalla A, Schnupp JWH.
    PLoS One; 2018 Dec 01; 13(4):e0194965. PubMed ID: 29617426
    [Abstract] [Full Text] [Related]

  • 20. Impact of monaural frequency compression on binaural fusion at the brainstem level.
    Klauke I, Kohl MC, Hannemann R, Kornagel U, Strauss DJ, Corona-Strauss FI.
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug 01; 2015():1646-9. PubMed ID: 26736591
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.