These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
173 related items for PubMed ID: 27176123
1. Osteoblast-Targeting-Peptide Modified Nanoparticle for siRNA/microRNA Delivery. Sun Y, Ye X, Cai M, Liu X, Xiao J, Zhang C, Wang Y, Yang L, Liu J, Li S, Kang C, Zhang B, Zhang Q, Wang Z, Hong A, Wang X. ACS Nano; 2016 Jun 28; 10(6):5759-68. PubMed ID: 27176123 [Abstract] [Full Text] [Related]
2. A bone-resorption surface-targeting nanoparticle to deliver anti-miR214 for osteoporosis therapy. Cai M, Yang L, Zhang S, Liu J, Sun Y, Wang X. Int J Nanomedicine; 2017 Jun 28; 12():7469-7482. PubMed ID: 29075114 [Abstract] [Full Text] [Related]
3. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Liang C, Guo B, Wu H, Shao N, Li D, Liu J, Dang L, Wang C, Li H, Li S, Lau WK, Cao Y, Yang Z, Lu C, He X, Au DW, Pan X, Zhang BT, Lu C, Zhang H, Yue K, Qian A, Shang P, Xu J, Xiao L, Bian Z, Tan W, Liang Z, He F, Zhang L, Lu A, Zhang G. Nat Med; 2015 Mar 28; 21(3):288-94. PubMed ID: 25665179 [Abstract] [Full Text] [Related]
4. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2. Zuo B, Zhu J, Li J, Wang C, Zhao X, Cai G, Li Z, Peng J, Wang P, Shen C, Huang Y, Xu J, Zhang X, Chen X. J Bone Miner Res; 2015 Feb 28; 30(2):330-45. PubMed ID: 25195535 [Abstract] [Full Text] [Related]
5. Peptide modified geniposidic acid targets bone and effectively promotes osteogenesis. Liu M, Zhu D, Jin F, Li S, Liu X, Wang X. J Orthop Translat; 2023 Jan 28; 38():23-31. PubMed ID: 36313979 [Abstract] [Full Text] [Related]
6. Anabolic bone formation via a site-specific bone-targeting delivery system by interfering with semaphorin 4D expression. Zhang Y, Wei L, Miron RJ, Shi B, Bian Z. J Bone Miner Res; 2015 Feb 28; 30(2):286-96. PubMed ID: 25088728 [Abstract] [Full Text] [Related]
7. MicroRNA-433-3p promotes osteoblast differentiation through targeting DKK1 expression. Tang X, Lin J, Wang G, Lu J. PLoS One; 2017 Feb 28; 12(6):e0179860. PubMed ID: 28628652 [Abstract] [Full Text] [Related]
8. Therapeutic RNA interference targeting CKIP-1 with a cross-species sequence to stimulate bone formation. Guo B, Zhang B, Zheng L, Tang T, Liu J, Wu H, Yang Z, Peng S, He X, Zhang H, Yue KK, He F, Zhang L, Qin L, Bian Z, Tan W, Liang Z, Lu A, Zhang G. Bone; 2014 Feb 28; 59():76-88. PubMed ID: 24246247 [Abstract] [Full Text] [Related]
9. Periostin-targeted SDSSD peptide decorated calcium phosphate nanocomposites incorporation with simvastatin for osteoporosis treatment. Pan Z, Zhang Z, Deng X, Hu F, Jia F, Lu J, Zhang X, Yang X, Gao Y, Wang X, Cui X, Xu C, Wu Y. Nanotechnology; 2023 Dec 01; 35(7):. PubMed ID: 37976543 [Abstract] [Full Text] [Related]
10. Induction of fibrillin-2 and periostin expression in Osterix-knockdown MC3T3-E1 cells. Lee SJ, Lee EH, Park SY, Kim JE. Gene; 2017 Jan 05; 596():123-129. PubMed ID: 27751812 [Abstract] [Full Text] [Related]
11. Peptide Engraftment on PEGylated Nanoliposomes for Bone Specific Delivery of PTH (1-34) in Osteoporosis. Salave S, Shinde SD, Rana D, Sahu B, Kumar H, Patel R, Benival D, Kommineni N. Pharmaceutics; 2023 Feb 11; 15(2):. PubMed ID: 36839930 [Abstract] [Full Text] [Related]
12. MicroRNA-338-3p regulates osteogenic differentiation of mouse bone marrow stromal stem cells by targeting Runx2 and Fgfr2. Liu H, Sun Q, Wan C, Li L, Zhang L, Chen Z. J Cell Physiol; 2014 Oct 11; 229(10):1494-502. PubMed ID: 24648262 [Abstract] [Full Text] [Related]
13. Dicer ablation in osteoblasts by Runx2 driven cre-loxP recombination affects bone integrity, but not glucocorticoid-induced suppression of bone formation. Liu P, Baumgart M, Groth M, Wittmann J, Jäck HM, Platzer M, Tuckermann JP, Baschant U. Sci Rep; 2016 Aug 24; 6():32112. PubMed ID: 27554624 [Abstract] [Full Text] [Related]
14. miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Li H, Li T, Fan J, Li T, Fan L, Wang S, Weng X, Han Q, Zhao RC. Cell Death Differ; 2015 Dec 24; 22(12):1935-45. PubMed ID: 26206089 [Abstract] [Full Text] [Related]
15. MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Chen L, Holmstrøm K, Qiu W, Ditzel N, Shi K, Hokland L, Kassem M. Stem Cells; 2014 Apr 24; 32(4):902-12. PubMed ID: 24307639 [Abstract] [Full Text] [Related]
16. Cyclosporin A elicits dose-dependent biphasic effects on osteoblast differentiation and bone formation. Yeo H, Beck LH, McDonald JM, Zayzafoon M. Bone; 2007 Jun 24; 40(6):1502-16. PubMed ID: 17392048 [Abstract] [Full Text] [Related]
17. Isolation and characterization of a novel peptide, osteoblast activating peptide (OBAP), associated with osteoblast differentiation and bone formation. Fukushima N, Hiraoka K, Shirachi I, Kojima M, Nagata K. Biochem Biophys Res Commun; 2010 Sep 10; 400(1):157-63. PubMed ID: 20709021 [Abstract] [Full Text] [Related]
18. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, Xia ZY, Zhou HD, Cao X, Xie H, Liao EY, Luo XH. J Clin Invest; 2015 Apr 10; 125(4):1509-22. PubMed ID: 25751060 [Abstract] [Full Text] [Related]
19. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML. J Bone Miner Res; 2008 Feb 10; 23(2):287-95. PubMed ID: 18197755 [Abstract] [Full Text] [Related]
20. MiR 376c inhibits osteoblastogenesis by targeting Wnt3 and ARF-GEF-1 -facilitated augmentation of beta-catenin transactivation. Kureel J, John AA, Prakash R, Singh D. J Cell Biochem; 2018 Apr 10; 119(4):3293-3303. PubMed ID: 29125885 [Abstract] [Full Text] [Related] Page: [Next] [New Search]