These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


101 related items for PubMed ID: 27176994

  • 1. In-phase and antiphase self-intensity regulated dual-frequency laser using two-photon absorption.
    Amili AE, Audo K, Alouini M.
    Opt Lett; 2016 May 15; 41(10):2326-9. PubMed ID: 27176994
    [Abstract] [Full Text] [Related]

  • 2. Experimental demonstration of a dual-frequency laser free from antiphase noise.
    El Amili A, Loas G, De S, Schwartz S, Feugnet G, Pocholle JP, Bretenaker F, Alouini M.
    Opt Lett; 2012 Dec 01; 37(23):4901-3. PubMed ID: 23202084
    [Abstract] [Full Text] [Related]

  • 3. Analytical modeling of dual-frequency solid-state lasers including a buffer reservoir for noise cancellation.
    Audo K, El Amili A, Alouini M.
    Opt Express; 2018 Apr 02; 26(7):8805-8820. PubMed ID: 29715843
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Buffer reservoir approach for cancellation of laser resonant noises.
    El Amili A, Loas G, Pouget L, Alouini M.
    Opt Lett; 2014 Sep 01; 39(17):5014-7. PubMed ID: 25166062
    [Abstract] [Full Text] [Related]

  • 7. Reduction of residual excess noise in class-A lasers using two-photon absorption.
    Audo K, Amili AE, Baili G, Dolfi D, Alouini M.
    Opt Lett; 2016 Sep 15; 41(18):4237-40. PubMed ID: 27628366
    [Abstract] [Full Text] [Related]

  • 8. Intensity noise suppression of a high-power single-frequency CW laser by controlling the stimulated emission rate.
    Guo Y, Lu H, Peng W, Su J, Peng K.
    Opt Lett; 2019 Dec 15; 44(24):6033-6036. PubMed ID: 32628212
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Intensity noise correlations in a two-frequency VECSEL.
    De S, Pal V, El Amili A, Pillet G, Baili G, Alouini M, Sagnes I, Ghosh R, Bretenaker F.
    Opt Express; 2013 Feb 11; 21(3):2538-50. PubMed ID: 23481712
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Towards low timing phase noise operation in fiber lasers mode locked by graphene oxide and carbon nanotubes at 1.5 µm.
    Wu K, Li X, Wang Y, Wang QJ, Shum PP, Chen J.
    Opt Express; 2015 Jan 12; 23(1):501-11. PubMed ID: 25835696
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Intracavity absorption with a continuous wave dye laser: quantification for a narrowband absorber.
    Brobst WD, Allen JE.
    Appl Opt; 1987 Sep 01; 26(17):3663-70. PubMed ID: 20490120
    [Abstract] [Full Text] [Related]

  • 19. Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser.
    Ishizawa A, Nishikawa T, Mizutori A, Takara H, Takada A, Sogawa T, Koga M.
    Opt Express; 2013 Dec 02; 21(24):29186-94. PubMed ID: 24514470
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.