These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


223 related items for PubMed ID: 27179296

  • 1. The oxidant and laser power-dependent plasmon-driven surface photocatalysis reaction of p-aminothiophenol dimerizing into p,p'-dimercaptoazobenzene on Au nanoparticles.
    Tan E, Yin P, Yu C, Yu G, Zhao C.
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Sep 05; 166():15-18. PubMed ID: 27179296
    [Abstract] [Full Text] [Related]

  • 2. Solvent-controlled plasmon-assisted surface catalysis reaction of 4-aminothiophenol dimerizing to p,p'-dimercaptoazobenzene on Ag nanoparticles.
    Liu Y, Yang D, Zhao Y, Yang Y, Wu S, Wang J, Xia L, Song P.
    Heliyon; 2019 Apr 05; 5(4):e01545. PubMed ID: 31061908
    [Abstract] [Full Text] [Related]

  • 3. Nitrite-triggered surface plasmon-assisted catalytic conversion of p-aminothiophenol to p,p'-dimercaptoazobenzene on gold nanoparticle: surface-enhanced Raman scattering investigation and potential for nitrite detection.
    Liu X, Tang L, Niessner R, Ying Y, Haisch C.
    Anal Chem; 2015 Jan 06; 87(1):499-506. PubMed ID: 25437255
    [Abstract] [Full Text] [Related]

  • 4. Ascertaining p,p'-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles.
    Fang Y, Li Y, Xu H, Sun M.
    Langmuir; 2010 Jun 01; 26(11):7737-46. PubMed ID: 20455558
    [Abstract] [Full Text] [Related]

  • 5. Plasmon catalytic PATP coupling reaction on Ag-NPs/graphite studied via in situ electrochemical surface-enhanced Raman spectroscopy.
    Zhong H, Chen J, Chen J, Tao R, Jiang J, Hu Y, Xu J, Zhang T, Liao J.
    Phys Chem Chem Phys; 2020 Oct 28; 22(41):23482-23490. PubMed ID: 32820299
    [Abstract] [Full Text] [Related]

  • 6. Laser-induced chemical transformation of PATP adsorbed on Ag nanoparticles by surface-enhanced Raman spectroscopy-a study of the effects from surface morphology of substrate and surface coverage of PATP.
    Xu JF, Liu GK.
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar 05; 138():873-7. PubMed ID: 25467654
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Observing reduction of 4-nitrobenzenthiol on gold nanoparticles in situ using surface-enhanced Raman spectroscopy.
    Ren X, Tan E, Lang X, You T, Jiang L, Zhang H, Yin P, Guo L.
    Phys Chem Chem Phys; 2013 Sep 14; 15(34):14196-201. PubMed ID: 23873410
    [Abstract] [Full Text] [Related]

  • 10. A novel application of plasmonics: plasmon-driven surface-catalyzed reactions.
    Sun M, Xu H.
    Small; 2012 Sep 24; 8(18):2777-86. PubMed ID: 22777813
    [Abstract] [Full Text] [Related]

  • 11. Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS.
    Wu DY, Zhao LB, Liu XM, Huang R, Huang YF, Ren B, Tian ZQ.
    Chem Commun (Camb); 2011 Mar 07; 47(9):2520-2. PubMed ID: 21267488
    [Abstract] [Full Text] [Related]

  • 12. Monitoring plasmon-driven surface catalyzed reactions in situ using time-dependent surface-enhanced Raman spectroscopy on single particles of hierarchical peony-like silver microflowers.
    Tang X, Cai W, Yang L, Liu J.
    Nanoscale; 2014 Aug 07; 6(15):8612-6. PubMed ID: 24980245
    [Abstract] [Full Text] [Related]

  • 13. Revisit of the plasmon-mediated chemical transformation of para-aminothiophenol.
    Kondo T, Inagaki M, Tanaka S, Tsukiji S, Motobayashi K, Ikeda K.
    Phys Chem Chem Phys; 2023 May 24; 25(20):14618-14626. PubMed ID: 37191289
    [Abstract] [Full Text] [Related]

  • 14. Surface-enhanced Raman spectroscopic study of p-aminothiophenol.
    Huang YF, Wu DY, Zhu HP, Zhao LB, Liu GK, Ren B, Tian ZQ.
    Phys Chem Chem Phys; 2012 Jun 28; 14(24):8485-97. PubMed ID: 22614115
    [Abstract] [Full Text] [Related]

  • 15. Theoretical Study of Plasmon-Enhanced Surface Catalytic Coupling Reactions of Aromatic Amines and Nitro Compounds.
    Zhao LB, Zhang M, Huang YF, Williams CT, Wu DY, Ren B, Tian ZQ.
    J Phys Chem Lett; 2014 Apr 03; 5(7):1259-66. PubMed ID: 26274481
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Role of Adsorption Orientation in Surface Plasmon-Driven Coupling Reactions Studied by Tip-Enhanced Raman Spectroscopy.
    Sun JJ, Su HS, Yue HL, Huang SC, Huang TX, Hu S, Sartin MM, Cheng J, Ren B.
    J Phys Chem Lett; 2019 May 16; 10(10):2306-2312. PubMed ID: 31013094
    [Abstract] [Full Text] [Related]

  • 18. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems.
    Pan L, Huang Y, Yang Y, Xiong W, Chen G, Su X, Wei H, Wang S, Wen W.
    Sci Rep; 2015 Nov 25; 5():17223. PubMed ID: 26601698
    [Abstract] [Full Text] [Related]

  • 19. Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS.
    Liang X, You T, Liu D, Lang X, Tan E, Shi J, Yin P, Guo L.
    Phys Chem Chem Phys; 2015 Apr 21; 17(15):10176-81. PubMed ID: 25793752
    [Abstract] [Full Text] [Related]

  • 20. Surface-Enhanced Raman Spectroscopy Assisted by Radical Capturer for Tracking of Plasmon-Driven Redox Reaction.
    Yan X, Wang L, Tan X, Tian B, Zhang J.
    Sci Rep; 2016 Jul 22; 6():30193. PubMed ID: 27444268
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.