These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


390 related items for PubMed ID: 27184456

  • 1. Physico-chemical and in vitro cellular properties of different calcium phosphate-bioactive glass composite chitosan-collagen (CaP@ChiCol) for bone scaffolds.
    Mooyen S, Charoenphandhu N, Teerapornpuntakit J, Thongbunchoo J, Suntornsaratoon P, Krishnamra N, Tang IM, Pon-On W.
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1758-1766. PubMed ID: 27184456
    [Abstract] [Full Text] [Related]

  • 2. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.
    Pon-On W, Charoenphandhu N, Teerapornpuntakit J, Thongbunchoo J, Krishnamra N, Tang IM.
    Mater Sci Eng C Mater Biol Appl; 2014 May 01; 38():63-72. PubMed ID: 24656353
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI, Lu ZF, Li JJ, Ellis-Behnke R, Kaplan DL, Zreiqat H.
    Acta Biomater; 2012 Jan 01; 8(1):302-12. PubMed ID: 22023750
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.
    Poh PSP, Hutmacher DW, Holzapfel BM, Solanki AK, Stevens MM, Woodruff MA.
    Acta Biomater; 2016 Jan 01; 30():319-333. PubMed ID: 26563472
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Role of HA and BG in engineering poly(ε-caprolactone) porous scaffolds for accelerating cranial bone regeneration.
    Yin HM, Li X, Wang P, Ren Y, Liu W, Xu JZ, Li JH, Li ZM.
    J Biomed Mater Res A; 2019 Mar 01; 107(3):654-662. PubMed ID: 30474348
    [Abstract] [Full Text] [Related]

  • 9. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics.
    Yun HS, Kim SH, Khang D, Choi J, Kim HH, Kang M.
    Int J Nanomedicine; 2011 Mar 01; 6():2521-31. PubMed ID: 22072886
    [Abstract] [Full Text] [Related]

  • 10. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix<sup/>.
    Nyberg E, Rindone A, Dorafshar A, Grayson WL.
    Tissue Eng Part A; 2017 Jun 01; 23(11-12):503-514. PubMed ID: 28027692
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K, Dasgupta S, Kundu B, Bissoyi A.
    J Biomater Sci Polym Ed; 2015 Jun 01; 26(16):1190-209. PubMed ID: 26335156
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications.
    Pinto RV, Gomes PS, Fernandes MH, Costa MEV, Almeida MM.
    Mater Sci Eng C Mater Biol Appl; 2020 Apr 01; 109():110557. PubMed ID: 32228952
    [Abstract] [Full Text] [Related]

  • 15. Effects of proliferation and differentiation of mesenchymal stem cells on compressive mechanical behavior of collagen/β-TCP composite scaffold.
    Arahira T, Todo M.
    J Mech Behav Biomed Mater; 2014 Nov 01; 39():218-30. PubMed ID: 25146676
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering.
    Matinfar M, Mesgar AS, Mohammadi Z.
    Mater Sci Eng C Mater Biol Appl; 2019 Jul 01; 100():341-353. PubMed ID: 30948070
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N, Wang M.
    Biofabrication; 2012 Mar 01; 4(1):015003. PubMed ID: 22258057
    [Abstract] [Full Text] [Related]

  • 20. Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure.
    Vella JB, Trombetta RP, Hoffman MD, Inzana J, Awad H, Benoit DSW.
    J Biomed Mater Res A; 2018 Mar 01; 106(3):663-672. PubMed ID: 29044984
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.