These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
213 related items for PubMed ID: 27188523
1. First-principles study of thermal properties of borophene. Sun H, Li Q, Wan XG. Phys Chem Chem Phys; 2016 Jun 01; 18(22):14927-32. PubMed ID: 27188523 [Abstract] [Full Text] [Related]
2. Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations. Liu G, Wang H, Gao Y, Zhou J, Wang H. Phys Chem Chem Phys; 2017 Jan 25; 19(4):2843-2849. PubMed ID: 28067931 [Abstract] [Full Text] [Related]
3. Three-Fold Enhancement of In-Plane Thermal Conductivity of Borophene through Metallic Atom Intercalation. Hu Y, Yin Y, Li S, Zhou H, Li D, Zhang G. Nano Lett; 2020 Oct 14; 20(10):7619-7626. PubMed ID: 32852213 [Abstract] [Full Text] [Related]
4. Borophene hydride: a stiff 2D material with high thermal conductivity and attractive optical and electronic properties. Mortazavi B, Makaremi M, Shahrokhi M, Raeisi M, Singh CV, Rabczuk T, Pereira LFC. Nanoscale; 2018 Feb 22; 10(8):3759-3768. PubMed ID: 29411815 [Abstract] [Full Text] [Related]
8. Electric field tuned anisotropic to isotropic thermal transport transition in monolayer borophene without altering its atomic structure. Yang Z, Yuan K, Meng J, Hu M. Nanoscale; 2020 Oct 07; 12(37):19178-19190. PubMed ID: 32926048 [Abstract] [Full Text] [Related]
11. Two-Dimensional Fluorinated Boron Sheets: Mechanical, Electronic, and Thermal Properties. Peköz R, Konuk M, Kilic ME, Durgun E. ACS Omega; 2018 Feb 28; 3(2):1815-1822. PubMed ID: 30023816 [Abstract] [Full Text] [Related]
12. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study. Guo SD, Liu JT. Phys Chem Chem Phys; 2017 Dec 06; 19(47):31982-31988. PubMed ID: 29177337 [Abstract] [Full Text] [Related]
13. Ultrahigh and anisotropic thermal transport in the hybridized monolayer (BC2N) of boron nitride and graphene: a first-principles study. Shafique A, Shin YH. Phys Chem Chem Phys; 2019 Aug 21; 21(31):17306-17313. PubMed ID: 31353375 [Abstract] [Full Text] [Related]
14. Atomic-scale analysis of the physical strength and phonon transport mechanisms of monolayer β-bismuthene. Chowdhury EH, Rahman MH, Bose P, Jayan R, Islam MM. Phys Chem Chem Phys; 2020 Dec 23; 22(48):28238-28255. PubMed ID: 33295342 [Abstract] [Full Text] [Related]
15. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap. Guo SD, Liu BG. J Phys Condens Matter; 2018 Mar 14; 30(10):105701. PubMed ID: 29376833 [Abstract] [Full Text] [Related]
17. A Multiscale Investigation on the Thermal Transport in Polydimethylsiloxane Nanocomposites: Graphene vs. Borophene. Di Pierro A, Mortazavi B, Noori H, Rabczuk T, Fina A. Nanomaterials (Basel); 2021 May 11; 11(5):. PubMed ID: 34064564 [Abstract] [Full Text] [Related]
18. Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes. Zha XH, Zhou J, Zhou Y, Huang Q, He J, Francisco JS, Luo K, Du S. Nanoscale; 2016 Mar 21; 8(11):6110-7. PubMed ID: 26932122 [Abstract] [Full Text] [Related]
19. Unusually low thermal conductivity of atomically thin 2D tellurium. Gao Z, Tao F, Ren J. Nanoscale; 2018 Jul 13; 10(27):12997-13003. PubMed ID: 29786732 [Abstract] [Full Text] [Related]
20. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Sung Choe H, Suslu A, Chen Y, Ko C, Park J, Liu K, Li J, Hippalgaonkar K, Urban JJ, Tongay S, Wu J. Nat Commun; 2015 Oct 16; 6():8573. PubMed ID: 26472285 [Abstract] [Full Text] [Related] Page: [Next] [New Search]