These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


407 related items for PubMed ID: 27193292

  • 21. BMP4-Induced Differentiation of Human Hair Follicle Neural Crest Stem Cells into Precursor Melanocytes from Hair Follicle Bulge.
    Yoon JH, Kim HJ, Kim JH, Kim TH, Seo CH, Sung YK, Kim KH.
    Ann Dermatol; 2020 Oct; 32(5):409-416. PubMed ID: 33911776
    [Abstract] [Full Text] [Related]

  • 22. Aberrant expression of complement regulatory proteins, membrane cofactor protein and decay accelerating factor, in the involved epidermis of patients with vitiligo.
    van den Wijngaard RM, Asghar SS, Pijnenborg AC, Tigges AJ, Westerhof W, Das PK.
    Br J Dermatol; 2002 Jan; 146(1):80-7. PubMed ID: 11841370
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis.
    Seleit I, Bakry OA, Abdou AG, Dawoud NM.
    Ann Diagn Pathol; 2014 Jun; 18(3):117-24. PubMed ID: 24560443
    [Abstract] [Full Text] [Related]

  • 25. Detection of melanocyte lineage-specific genes in vitiligo lesions.
    Xu W, Wang X.
    Exp Ther Med; 2019 Jun; 17(6):4485-4491. PubMed ID: 31086580
    [Abstract] [Full Text] [Related]

  • 26. Characterization of a new, inducible transgenic mouse model with GFP expression in melanocytes and their precursors.
    Joshi SS, Tandukar B, Castaneda M, Jiang S, Diwakar G, Hertzano RP, Hornyak TJ.
    Gene Expr Patterns; 2018 Jan; 27():76-84. PubMed ID: 29061525
    [Abstract] [Full Text] [Related]

  • 27. Skin pigmentation and its control: From ultraviolet radiation to stem cells.
    Yardman-Frank JM, Fisher DE.
    Exp Dermatol; 2021 Apr; 30(4):560-571. PubMed ID: 33320376
    [Abstract] [Full Text] [Related]

  • 28. New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions.
    Moretti S, Spallanzani A, Amato L, Hautmann G, Gallerani I, Fabiani M, Fabbri P.
    Pigment Cell Res; 2002 Apr; 15(2):87-92. PubMed ID: 11936274
    [Abstract] [Full Text] [Related]

  • 29. Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blistered epidermis may cause passive melanocyte death in vitiligo.
    Lee AY, Kim NH, Choi WI, Youm YH.
    J Invest Dermatol; 2005 May; 124(5):976-83. PubMed ID: 15854039
    [Abstract] [Full Text] [Related]

  • 30. Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo.
    Wagner RY, Luciani F, Cario-André M, Rubod A, Petit V, Benzekri L, Ezzedine K, Lepreux S, Steingrimsson E, Taieb A, Gauthier Y, Larue L, Delmas V.
    J Invest Dermatol; 2015 Jul; 135(7):1810-1819. PubMed ID: 25634357
    [Abstract] [Full Text] [Related]

  • 31. Glabrous lesional stem cells differentiated into functional melanocytes: new hope for repigmentation.
    Kumar R, Parsad D, Rani S, Bhardwaj S, Srivastav N.
    J Eur Acad Dermatol Venereol; 2016 Sep; 30(9):1555-60. PubMed ID: 27538731
    [Abstract] [Full Text] [Related]

  • 32. RNA-seq Reveals Dysregulation of Novel Melanocyte Genes upon Oxidative Stress: Implications in Vitiligo Pathogenesis.
    Sastry KS, Naeem H, Mokrab Y, Chouchane AI.
    Oxid Med Cell Longev; 2019 Sep; 2019():2841814. PubMed ID: 31871544
    [Abstract] [Full Text] [Related]

  • 33. Study of CCN3 (NOV) and DDR1 in normal melanocytes and vitiligo skin.
    Ricard AS, Pain C, Daubos A, Ezzedine K, Lamrissi-Garcia I, Bibeyran A, Guyonnet-Dupérat V, Taieb A, Cario-André M.
    Exp Dermatol; 2012 Jun; 21(6):411-6. PubMed ID: 22507556
    [Abstract] [Full Text] [Related]

  • 34. Expression and modulation of apoptosis regulatory molecules in human melanocytes: significance in vitiligo.
    van den Wijngaard RM, Aten J, Scheepmaker A, Le Poole IC, Tigges AJ, Westerhof W, Das PK.
    Br J Dermatol; 2000 Sep; 143(3):573-81. PubMed ID: 10971331
    [Abstract] [Full Text] [Related]

  • 35. A novel mouse model to evaluate neuropeptide Y-mediated melanocyte pathology.
    Anderson ZT, Mehl J, Corder KM, Dobrunz LE, Harris ML.
    Exp Dermatol; 2021 Dec; 30(12):1800-1806. PubMed ID: 34114698
    [Abstract] [Full Text] [Related]

  • 36. Role of hair follicles in the repigmentation of vitiligo.
    Cui J, Shen LY, Wang GC.
    J Invest Dermatol; 1991 Sep; 97(3):410-6. PubMed ID: 1714927
    [Abstract] [Full Text] [Related]

  • 37. Histamine effect on melanocyte proliferation and vitiliginous keratinocyte survival.
    Kim NH, Lee AY.
    Exp Dermatol; 2010 Dec; 19(12):1073-9. PubMed ID: 21054556
    [Abstract] [Full Text] [Related]

  • 38. Melanocyte-keratinocyte cross-talk in vitiligo.
    Touni AA, Shivde RS, Echuri H, Abdel-Aziz RTA, Abdel-Wahab H, Kundu RV, Le Poole IC.
    Front Med (Lausanne); 2023 Dec; 10():1176781. PubMed ID: 37275386
    [Abstract] [Full Text] [Related]

  • 39. Melanocytes are not absent in lesional skin of long duration vitiligo.
    Tobin DJ, Swanson NN, Pittelkow MR, Peters EM, Schallreuter KU.
    J Pathol; 2000 Aug; 191(4):407-16. PubMed ID: 10918216
    [Abstract] [Full Text] [Related]

  • 40. Intelligent bioengineering in vitiligo treatment: transdermal protein transduction of melanocyte-lineage-specific genes.
    Mou Y, Jiang X, Du Y, Xue L.
    Med Hypotheses; 2012 Dec; 79(6):786-9. PubMed ID: 22999738
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.