These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


306 related items for PubMed ID: 27194106

  • 1. Will an algal CO2-concentrating mechanism work in higher plants?
    Meyer MT, McCormick AJ, Griffiths H.
    Curr Opin Plant Biol; 2016 Jun; 31():181-8. PubMed ID: 27194106
    [Abstract] [Full Text] [Related]

  • 2. Condensation of Rubisco into a proto-pyrenoid in higher plant chloroplasts.
    Atkinson N, Mao Y, Chan KX, McCormick AJ.
    Nat Commun; 2020 Dec 09; 11(1):6303. PubMed ID: 33298923
    [Abstract] [Full Text] [Related]

  • 3. The biodiversity of carbon assimilation.
    Kroth PG.
    J Plant Physiol; 2015 Jan 01; 172():76-81. PubMed ID: 25239594
    [Abstract] [Full Text] [Related]

  • 4. A basal carbon concentrating mechanism in plants?
    Zabaleta E, Martin MV, Braun HP.
    Plant Sci; 2012 May 01; 187():97-104. PubMed ID: 22404837
    [Abstract] [Full Text] [Related]

  • 5. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger.
    Wunder T, Cheng SLH, Lai SK, Li HY, Mueller-Cajar O.
    Nat Commun; 2018 Nov 29; 9(1):5076. PubMed ID: 30498228
    [Abstract] [Full Text] [Related]

  • 6. A Spatial Interactome Reveals the Protein Organization of the Algal CO2-Concentrating Mechanism.
    Mackinder LCM, Chen C, Leib RD, Patena W, Blum SR, Rodman M, Ramundo S, Adams CM, Jonikas MC.
    Cell; 2017 Sep 21; 171(1):133-147.e14. PubMed ID: 28938113
    [Abstract] [Full Text] [Related]

  • 7. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields.
    Adler L, Díaz-Ramos A, Mao Y, Pukacz KR, Fei C, McCormick AJ.
    Plant Physiol; 2022 Oct 27; 190(3):1609-1627. PubMed ID: 35961043
    [Abstract] [Full Text] [Related]

  • 8. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants.
    Rae BD, Long BM, Förster B, Nguyen ND, Velanis CN, Atkinson N, Hee WY, Mukherjee B, Price GD, McCormick AJ.
    J Exp Bot; 2017 Jun 01; 68(14):3717-3737. PubMed ID: 28444330
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Pyrenoid proteomics reveals independent evolution of the CO2-concentrating organelle in chlorarachniophytes.
    Moromizato R, Fukuda K, Suzuki S, Motomura T, Nagasato C, Hirakawa Y.
    Proc Natl Acad Sci U S A; 2024 Mar 05; 121(10):e2318542121. PubMed ID: 38408230
    [Abstract] [Full Text] [Related]

  • 16. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity.
    Sharwood RE, Ghannoum O, Whitney SM.
    Curr Opin Plant Biol; 2016 Jun 05; 31():135-42. PubMed ID: 27131319
    [Abstract] [Full Text] [Related]

  • 17. A carboxysome-based CO2 concentrating mechanism for C3 crop chloroplasts: advances and the road ahead.
    Nguyen ND, Pulsford SB, Förster B, Rottet S, Rourke L, Long BM, Price GD.
    Plant J; 2024 May 05; 118(4):940-952. PubMed ID: 38321620
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Prospects for Engineering Biophysical CO2 Concentrating Mechanisms into Land Plants to Enhance Yields.
    Hennacy JH, Jonikas MC.
    Annu Rev Plant Biol; 2020 Apr 29; 71():461-485. PubMed ID: 32151155
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.