These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
209 related items for PubMed ID: 27198611
1. MAGNETIC RESONANCE IMAGING SCORING OF AN EXPERIMENTAL MODEL OF POST-TRAUMATIC OSTEOARTHRITIS IN THE EQUINE CARPUS. Smith AD, Morton AJ, Winter MD, Colahan PT, Ghivizzani S, Brown MP, Hernandez JA, Nickerson DM. Vet Radiol Ultrasound; 2016 Sep; 57(5):502-14. PubMed ID: 27198611 [Abstract] [Full Text] [Related]
2. Comparison between magnetic resonance imaging, computed tomography, and arthrography to identify artificially induced cartilage defects of the equine carpal joints. Suarez Sanchez-Andrade J, Richter H, Kuhn K, Bischofberger AS, Kircher PR, Hoey S. Vet Radiol Ultrasound; 2018 May; 59(3):312-325. PubMed ID: 29455473 [Abstract] [Full Text] [Related]
3. Detection of early osteoarthritis in the centrodistal joints of Icelandic horses: Evaluation of radiography and low-field magnetic resonance imaging. Ley CJ, Björnsdóttir S, Ekman S, Boyde A, Hansson K. Equine Vet J; 2016 Jan; 48(1):57-64. PubMed ID: 25290785 [Abstract] [Full Text] [Related]
4. Effects of exercise and polysulfated glycosaminoglycan on the development of osteoarthritis in equine carpal joints with osteochondral defects. Todhunter RJ, Freeman KP, Yeager AE, Lust G. Vet Surg; 1993 Jan; 22(5):330-42. PubMed ID: 8236786 [Abstract] [Full Text] [Related]
5. Relationship between cartilage and subchondral bone lesions in repetitive impact trauma-induced equine osteoarthritis. Lacourt M, Gao C, Li A, Girard C, Beauchamp G, Henderson JE, Laverty S. Osteoarthritis Cartilage; 2012 Jun; 20(6):572-83. PubMed ID: 22343573 [Abstract] [Full Text] [Related]
6. Effects of exercise vs experimental osteoarthritis on imaging outcomes. Kawcak CE, Frisbie DD, Werpy NM, Park RD, McIlwraith CW. Osteoarthritis Cartilage; 2008 Dec; 16(12):1519-25. PubMed ID: 18504148 [Abstract] [Full Text] [Related]
7. Comparison of magnetic resonance imaging, computed tomography, and radiography for assessment of noncartilaginous changes in equine metacarpophalangeal osteoarthritis. Olive J, D'Anjou MA, Alexander K, Laverty S, Theoret C. Vet Radiol Ultrasound; 2010 Dec; 51(3):267-79. PubMed ID: 20469548 [Abstract] [Full Text] [Related]
8. Ex vivo magnetic resonance imaging of the distal row of equine carpal bones: assessment of bone sclerosis and cartilage damage. Anastasiou A, Skioldebrand E, Ekman S, Hall LD. Vet Radiol Ultrasound; 2003 Dec; 44(5):501-12. PubMed ID: 14599160 [Abstract] [Full Text] [Related]
10. Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation. Bertuglia A, Lacourt M, Girard C, Beauchamp G, Richard H, Laverty S. Osteoarthritis Cartilage; 2016 Mar; 24(3):555-66. PubMed ID: 26505663 [Abstract] [Full Text] [Related]
14. Evaluation of osteochondral sample collection guided by computed tomography and magnetic resonance imaging for early detection of osteoarthritis in centrodistal joints of young Icelandic horses. Ley CJ, Ekman S, Dahlberg LE, Björnsdóttir S, Hansson K. Am J Vet Res; 2013 Jun; 74(6):874-87. PubMed ID: 23718656 [Abstract] [Full Text] [Related]
15. Effects of extracorporeal shock wave therapy and polysulfated glycosaminoglycan treatment on subchondral bone, serum biomarkers, and synovial fluid biomarkers in horses with induced osteoarthritis. Kawcak CE, Frisbie DD, McIlwraith CW. Am J Vet Res; 2011 Jun; 72(6):772-9. PubMed ID: 21627523 [Abstract] [Full Text] [Related]