These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


255 related items for PubMed ID: 2719933

  • 1. Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II.
    Schleicher A, Kühn H, Hofmann KP.
    Biochemistry; 1989 Feb 21; 28(4):1770-5. PubMed ID: 2719933
    [Abstract] [Full Text] [Related]

  • 2. Kinetic study on the equilibrium between membrane-bound and free photoreceptor G-protein.
    Schleicher A, Hofmann KP.
    J Membr Biol; 1987 Feb 21; 95(3):271-81. PubMed ID: 3585982
    [Abstract] [Full Text] [Related]

  • 3. Temperature dependence of G-protein activation in photoreceptor membranes. Transient extra metarhodopsin II on bovine disk membranes.
    Kohl B, Hofmann KP.
    Biophys J; 1987 Aug 21; 52(2):271-7. PubMed ID: 3117126
    [Abstract] [Full Text] [Related]

  • 4. Rapid transducin deactivation in intact stacks of bovine rod outer segment disks as studied by light scattering techniques. Arrestin requires additional soluble proteins for rapid quenching of rhodopsin catalytic activity.
    Wagner R, Ryba N, Uhl R.
    FEBS Lett; 1988 Aug 01; 235(1-2):103-8. PubMed ID: 3136032
    [Abstract] [Full Text] [Related]

  • 5. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes.
    Parkes JH, Gibson SK, Liebman PA.
    Biochemistry; 1999 May 25; 38(21):6862-78. PubMed ID: 10346908
    [Abstract] [Full Text] [Related]

  • 6. Shift in the relation between flash-induced metarhodopsin I and metarhodpsin II within the first 10% rhodopsin bleaching in bovine disc membranes.
    Emeis D, Hofmann KP.
    FEBS Lett; 1981 Dec 28; 136(2):201-7. PubMed ID: 7327258
    [No Abstract] [Full Text] [Related]

  • 7. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa, Fesenko EE.
    Mol Biol (Mosk); 1981 Dec 28; 15(6):1276-85. PubMed ID: 7322116
    [Abstract] [Full Text] [Related]

  • 8. Regulation of rhodopsin dephosphorylation by arrestin.
    Palczewski K, McDowell JH, Jakes S, Ingebritsen TS, Hargrave PA.
    J Biol Chem; 1989 Sep 25; 264(27):15770-3. PubMed ID: 2550422
    [Abstract] [Full Text] [Related]

  • 9. Modeling the rod outer segment birefringence change correlated with metarhodopsin II formation.
    Kaplan MW.
    Biophys J; 1982 Jun 25; 38(3):237-41. PubMed ID: 6980674
    [Abstract] [Full Text] [Related]

  • 10. Functional differences in the interaction of arrestin and its splice variant, p44, with rhodopsin.
    Pulvermüller A, Maretzki D, Rudnicka-Nawrot M, Smith WC, Palczewski K, Hofmann KP.
    Biochemistry; 1997 Jul 29; 36(30):9253-60. PubMed ID: 9230059
    [Abstract] [Full Text] [Related]

  • 11. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin.
    Pfister C, Kühn H, Chabre M.
    Eur J Biochem; 1983 Nov 15; 136(3):489-99. PubMed ID: 6315431
    [Abstract] [Full Text] [Related]

  • 12. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium.
    Emeis D, Kühn H, Reichert J, Hofmann KP.
    FEBS Lett; 1982 Jun 21; 143(1):29-34. PubMed ID: 6288450
    [No Abstract] [Full Text] [Related]

  • 13. Inactivation of photoexcited rhodopsin in retinal rods: the roles of rhodopsin kinase and 48-kDa protein (arrestin).
    Bennett N, Sitaramayya A.
    Biochemistry; 1988 Mar 08; 27(5):1710-5. PubMed ID: 3365420
    [Abstract] [Full Text] [Related]

  • 14. Effects of lipid environment on the light-induced conformational changes of rhodopsin. 1. Absence of metarhodopsin II production in dimyristoylphosphatidylcholine recombinant membranes.
    Baldwin PA, Hubbell WL.
    Biochemistry; 1985 May 21; 24(11):2624-32. PubMed ID: 4027217
    [Abstract] [Full Text] [Related]

  • 15. Kinetics and mechanism of rhodopsin regeneration with 11-cis-retinal.
    Cusanovich MA.
    Methods Enzymol; 1982 May 21; 81():443-7. PubMed ID: 6212745
    [No Abstract] [Full Text] [Related]

  • 16. Effect of GTP on the rhodopsin-G-protein complex by transient formation of extra metarhodopsin II.
    Hofmann KP.
    Biochim Biophys Acta; 1985 Nov 27; 810(2):278-81. PubMed ID: 3933561
    [Abstract] [Full Text] [Related]

  • 17. Interplay between hydroxylamine, metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes.
    Hofmann KP, Emeis D, Schnetkamp PP.
    Biochim Biophys Acta; 1983 Oct 31; 725(1):60-70. PubMed ID: 6313051
    [Abstract] [Full Text] [Related]

  • 18. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved.
    Bennett N, Michel-Villaz M, Kühn H.
    Eur J Biochem; 1982 Sep 31; 127(1):97-103. PubMed ID: 6291939
    [Abstract] [Full Text] [Related]

  • 19. Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin.
    Pulvermüller A, Schroder K, Fischer T, Hofmann KP.
    J Biol Chem; 2000 Dec 01; 275(48):37679-85. PubMed ID: 10969086
    [Abstract] [Full Text] [Related]

  • 20. Phosphorylation alters the pH-dependent active state equilibrium of rhodopsin by modulating the membrane surface potential.
    Gibson SK, Parkes JH, Liebman PA.
    Biochemistry; 1999 Aug 24; 38(34):11103-14. PubMed ID: 10460166
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.