These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


303 related items for PubMed ID: 2719939

  • 1. A covalent angiogenin/ribonuclease hybrid with a fourth disulfide bond generated by regional mutagenesis.
    Harper JW, Vallee BL.
    Biochemistry; 1989 Feb 21; 28(4):1875-84. PubMed ID: 2719939
    [Abstract] [Full Text] [Related]

  • 2. Mutagenesis of residues flanking Lys-40 enhances the enzymatic activity and reduces the angiogenic potency of angiogenin.
    Harper JW, Fox EA, Shapiro R, Vallee BL.
    Biochemistry; 1990 Aug 07; 29(31):7297-302. PubMed ID: 1698454
    [Abstract] [Full Text] [Related]

  • 3. Replacement of residues 8-22 of angiogenin with 7-21 of RNase A selectively affects protein synthesis inhibition and angiogenesis.
    Bond MD, Vallee BL.
    Biochemistry; 1990 Apr 03; 29(13):3341-9. PubMed ID: 1692238
    [Abstract] [Full Text] [Related]

  • 4. Enzymatically active angiogenin/ribonuclease A hybrids formed by peptide interchange.
    Harper JW, Auld DS, Riordan JF, Vallee BL.
    Biochemistry; 1988 Jan 12; 27(1):219-26. PubMed ID: 3349027
    [Abstract] [Full Text] [Related]

  • 5. Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis.
    Shapiro R, Vallee BL.
    Biochemistry; 1989 Sep 05; 28(18):7401-8. PubMed ID: 2479414
    [Abstract] [Full Text] [Related]

  • 6. Structural features that determine the enzymatic potency and specificity of human angiogenin: threonine-80 and residues 58-70 and 116-123.
    Shapiro R.
    Biochemistry; 1998 May 12; 37(19):6847-56. PubMed ID: 9578571
    [Abstract] [Full Text] [Related]

  • 7. Mutagenesis of aspartic acid-116 enhances the ribonucleolytic activity and angiogenic potency of angiogenin.
    Harper JW, Vallee BL.
    Proc Natl Acad Sci U S A; 1988 Oct 12; 85(19):7139-43. PubMed ID: 2459697
    [Abstract] [Full Text] [Related]

  • 8. Alteration of the enzymatic specificity of human angiogenin by site-directed mutagenesis.
    Curran TP, Shapiro R, Riordan JF.
    Biochemistry; 1993 Mar 09; 32(9):2307-13. PubMed ID: 8095159
    [Abstract] [Full Text] [Related]

  • 9. A hybrid of bovine pancreatic ribonuclease and human angiogenin: an external loop as a module controlling substrate specificity?
    Allemann RK, Presnell SR, Benner SA.
    Protein Eng; 1991 Oct 09; 4(7):831-5. PubMed ID: 1798706
    [Abstract] [Full Text] [Related]

  • 10. Expression of Met-(-1) angiogenin in Escherichia coli: conversion to the authentic less than Glu-1 protein.
    Shapiro R, Harper JW, Fox EA, Jansen HW, Hein F, Uhlmann E.
    Anal Biochem; 1988 Dec 09; 175(2):450-61. PubMed ID: 3071185
    [Abstract] [Full Text] [Related]

  • 11. Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily.
    Saxena SK, Rybak SM, Davey RT, Youle RJ, Ackerman EJ.
    J Biol Chem; 1992 Oct 25; 267(30):21982-6. PubMed ID: 1400510
    [Abstract] [Full Text] [Related]

  • 12. Cleavage of 3',5'-pyrophosphate-linked dinucleotides by ribonuclease A and angiogenin.
    Jardine AM, Leonidas DD, Jenkins JL, Park C, Raines RT, Acharya KR, Shapiro R.
    Biochemistry; 2001 Aug 28; 40(34):10262-72. PubMed ID: 11513604
    [Abstract] [Full Text] [Related]

  • 13. Guest-host crosstalk in an angiogenin-RNase A chimeric protein.
    Holloway DE, Shapiro R, Hares MC, Leonidas DD, Acharya KR.
    Biochemistry; 2002 Aug 20; 41(33):10482-9. PubMed ID: 12173935
    [Abstract] [Full Text] [Related]

  • 14. Crystallographic studies on structural features that determine the enzymatic specificity and potency of human angiogenin: Thr44, Thr80, and residues 38-41.
    Holloway DE, Chavali GB, Hares MC, Baker MD, Subbarao GV, Shapiro R, Acharya KR.
    Biochemistry; 2004 Feb 10; 43(5):1230-41. PubMed ID: 14756559
    [Abstract] [Full Text] [Related]

  • 15. Role of lysines in human angiogenin: chemical modification and site-directed mutagenesis.
    Shapiro R, Fox EA, Riordan JF.
    Biochemistry; 1989 Feb 21; 28(4):1726-32. PubMed ID: 2497770
    [Abstract] [Full Text] [Related]

  • 16. Residues 36-42 of liver RNase PL3 contribute to its uridine-preferring substrate specificity. Cloning of the cDNA and site-directed mutagenesis studies.
    Vicentini AM, Hemmings BA, Hofsteenge J.
    Protein Sci; 1994 Mar 21; 3(3):459-66. PubMed ID: 8019417
    [Abstract] [Full Text] [Related]

  • 17. The complete amino acid sequence of bovine milk angiogenin.
    Maes P, Damart D, Rommens C, Montreuil J, Spik G, Tartar A.
    FEBS Lett; 1988 Dec 05; 241(1-2):41-5. PubMed ID: 3197838
    [Abstract] [Full Text] [Related]

  • 18. Isolation of bovine angiogenin using a placental ribonuclease inhibitor binding assay.
    Bond MD, Vallee BL.
    Biochemistry; 1988 Aug 23; 27(17):6282-7. PubMed ID: 3064806
    [Abstract] [Full Text] [Related]

  • 19. Dual site model for the organogenic activity of angiogenin.
    Hallahan TW, Shapiro R, Vallee BL.
    Proc Natl Acad Sci U S A; 1991 Mar 15; 88(6):2222-6. PubMed ID: 2006161
    [Abstract] [Full Text] [Related]

  • 20. Base cleavage specificity of angiogenin with Saccharomyces cerevisiae and Escherichia coli 5S RNAs.
    Rybak SM, Vallee BL.
    Biochemistry; 1988 Apr 05; 27(7):2288-94. PubMed ID: 3289612
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.